# Solve the equation. x^{2}-14x=0

Solve the equation.
$$\displaystyle{x}^{{{2}}}-{14}{x}={0}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

Befory
Step 1
Given equation is $$\displaystyle{x}^{{{2}}}−{14}{x}={0}$$.
To solve the given equation.
Solution:
Solving the given equation.
$$\displaystyle{x}^{{{2}}}-{14}{x}={0}$$
x(x-14)=0
x=0 or (x-14)=0
x=0 or x=14
Therefore, solution is x={0, 14}.
Step 2
Hence, required solution is x={0,14}.
###### Have a similar question?
Gloria Lusk
Step 1: Use the formula for the roots of the quadratic equation
$$\displaystyle{x}={\frac{{-{b}\pm\sqrt{{{b}^{{{2}}}-{4}{a}{c}}}}}{{{2}{a}}}}$$
In the standard form, determine a, b and c from the original equation and insert them into the formula for the roots of the quadratic equation.
$$\displaystyle{x}^{{{2}}}-{14}{x}={0}$$
a=1
b=-14
c=0
$$\displaystyle{x}={\frac{{-{\left(-{14}\right)}\pm\sqrt{{{\left(-{14}\right)}^{{{2}}}-{4}\cdot{1}\cdot{0}}}}}{{{2}\cdot{1}}}}$$
Step 2: Simplification
$$\displaystyle{x}={\frac{{{14}\pm\sqrt{{{\left({196}-{4}\cdot{1}\cdot{0}\right\rbrace}}}{\left\lbrace{2}\cdot{1}\right\rbrace}}}{}}$$
$$\displaystyle{x}={\frac{{{14}\pm\sqrt{{{\left({196}+{0}\right\rbrace}}}{\left\lbrace{2}\cdot{1}\right\rbrace}}}{}}$$
$$\displaystyle{x}={\frac{{{14}\pm\sqrt{{{\left({196}\right\rbrace}}}{\left\lbrace{2}\cdot{1}\right\rbrace}}}{}}$$
$$\displaystyle{x}={\frac{{{14}\pm{14}}}{{{2}}}}$$
Step 3: Divide the equation
$$\displaystyle{x}={\frac{{{14}+{14}}}{{{2}}}}$$
$$\displaystyle{x}={\frac{{{14}-{14}}}{{{2}}}}$$
Step 4: Calculation
x=14
x=0
The solution
x=14
x=0

• Questions are typically answered in as fast as 30 minutes