Expert Community at Your Service
Solve your problem for the price of one coffee
Evaluate limit: limx→∞(3⋅21−x+x2⋅21−x) limx→a[f(x)+−g(x)]=limx→af(x)+−limx→ag(x) limx→∞(3⋅21−x+x2⋅21−x)=limx→∞(3⋅21−x)+limx→∞(x2⋅21−x) =3⋅limx→∞(21−x)+2⋅limx→∞(x2⋅2−x) =3⋅limx→∞(21−x)+2⋅limx→∞(x2⋅12x) Take 3⋅limx→∞(21−x) Apply exponent rule ax=elnax=ex⋅lna =3⋅limx→∞(e(1−x)⋅ln2) =3⋅limx→∞21−x =3⋅limx→∞ex⋅ln2 Apple the Limit Chain Rule: g(x)=xln(2),f(u)=eu =−∞⋅ln2 =−∞ 3⋅limx→∞ex⋅ln2=3⋅e−∞ =3⋅0 =0 Take 2⋅limx→∞x2⋅12x if sum an converges,then limn→∞(an)=0 Apply ratio test and check weather series is convergent of divergent if |an+1an|≤q eventually for some 0, then ∑n=1x|an| converges, if |an+1an|>1 eventually then ∑n=1xan diverges limx→∞(x22x)=0 =2⋅0 =0 limx→∞(3⋅21−x+x2⋅21−x)=3⋅limx→∞(21−x)+2⋅limx→∞(x2⋅12x) =0+0 =0 Result: 3⋅limx→∞(21−x)+2⋅limx→∞(x2⋅12x)=0
Ask your question. Get your answer. Easy as that
Get answers within minutes and finish your homework faster
Or
Dont have an account? Register
Create a free account to see answers
Already have an account? Sign in