Find the following complex limits. lim_{nrightarrowinfty}frac{1}{3+ni}

Question
Limits and continuity
Find the following complex limits. $$\lim_{n\rightarrow\infty}\frac{1}{3+ni}$$

2021-02-04
$$\lim_{n\rightarrow\infty}\frac{1}{3+ni}$$
Rationalize $$\frac{1}{3+ni}$$ as
$$\frac{1}{3+ni}=\frac{1}{3+ni}\cdot\frac{3-ni}{3-ni}$$
$$=\frac{3-ni}{3^2-n^2i^2}$$
Substitute $$i^2=-1$$ and solve further
$$\frac{1}{3+ni}=\frac{3-ni}{3^2+n^2}$$
$$=\frac{\frac{3-ni}{n^2}}{\frac{3^2+n^2}{n^2}}$$
$$=\frac{\frac{3}{n^2}-\frac{1}{ni}}{\frac{3^2}{n^2}+1}$$
Substitute
$$\frac{1}{3+ni}=\frac{\frac{3}{n^2}-\frac{1}{n}i}{\frac{3^2}{n^2}+1}$$
Hence
$$\lim_{n\rightarrow\infty}\frac{1}{3+ni}=\lim_{n\rightarrow\infty}\frac{\frac{3}{n^2}-\frac{1}{ni}}{\frac{3^2}{n^2}+1}$$
$$=\frac{(0-0i)}{(0+1)}$$
$$=0$$

Relevant Questions

Find the following complex limits. $$\lim_{n\rightarrow\infty}\frac{2n}{7n+ni}$$
Find the following complex limits. $$\lim_{n\rightarrow\infty}\frac{6n}{2n-n^2i}$$
Let $$a_n\rightarrow0$$, and use the Algebraic Limit Theorem to compute each of the following limits (assuming the fractions are always defined):
$$\lim_{n\rightarrow\infty}\frac{1+2a_n}{1+3a_n-4(a_n)^2}$$
Find the following limit.
$$\lim_{n\rightarrow\infty}\frac{2n^2+2}{5n^3-3n-1}$$
Evaluate the following limits.
$$\lim_{n\rightarrow\infty}n^2\ln(n\sin\frac{1}{n})$$
Find each of the following limits. If the limit is not finite, indicate or for one- or two-sided limits, as appropriate.
$$\lim_{x\rightarrow\infty}\frac{4x^3-2x-1}{x^2-1}$$
$$\lim_{h\rightarrow0}\frac{3}{\sqrt{16+3h}+4}$$
Find the following limits or state that they do not exist. $$\lim_{x\rightarrow4}\frac{31x-42\cdot\sqrt{x+5}}{3-\sqrt{x+5}}$$
$$\lim_{n\rightarrow\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n})$$
$$\lim_{(x,y)\rightarrow(0,\pi/2)}\frac{1-\cos xy}{4x^2y^3}$$