# Solve for x using log50=600e^{-0.4x} Question
Logarithms Solve for x using $$\log50=600e^{-0.4x}$$ 2021-01-26
To solve equation
$$50=600e^{-0.4x}$$
$$\frac{50}{600}=e^{-0.4x}$$
taking ln of both sides we get
$$\ln(50/600)=\ln e^{-0.4x}$$
$$\ln0.08=\ln e^{-0.4x}$$
since $$\ln e^x=x$$
$$x=-\frac{(-2.53)}{0.4}$$
$$=6.32$$
Hence x=6.32
Result: x=6.32

### Relevant Questions Solve for x. $$\displaystyle{\log{{7}}}{\left({x}+{6}\right)}={0}$$ Solve for x $$\displaystyle{1200}{\left({1.03}\right)}^{{x}}={800}{\left({1.08}\right)}^{{x}}$$ Solve for X $$\displaystyle{\log{{X}}}={4}$$ How to solve $$\displaystyle{\log{{50}}}+{\log{{\left(\frac{{x}}{{2}}\right)}}}={0}$$ Solve: $$\displaystyle{\log{{6}}}{x}={0.5}{\log{{6}}}{36}$$ Solve the equation and find the exact solution:
$$\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}$$ solve the equation $$\displaystyle{\log{{\left({b}{a}{s}{e}{16}\right)}}}{\left({3}{x}-{1}\right)}={\log{{\left({b}{a}{s}{e}{4}\right)}}}{\left({3}{x}\right)}+{\log{{\left({b}{a}{s}{e}{4}\right)}}}{0.5}$$? Solve the equations and inequalities: $$\frac{2^{x}}{3}\leq\frac{5^{x}}{4}$$ Solve the equations and inequalities. Write the solution sets to the inequalities in interval notation. $$\displaystyle{\log{{2}}}{\left({3}{x}−{1}\right)}={\log{{2}}}{\left({x}+{1}\right)}+{3}$$ Solve the equations and inequalities: $$\displaystyle{\frac{{{2}^{{{x}}}}}{{{3}}}}\leq{\frac{{{5}^{{{x}}}}}{{{4}}}}$$