Determine the null space of each of the following matrices: begin{bmatrix}2 & 1 3 & 2 end{bmatrix}

Question
Matrices
asked 2021-02-25
Determine the null space of each of the following matrices:
\(\begin{bmatrix}2 & 1 \\3 & 2 \end{bmatrix}\)

Answers (1)

2021-02-26
Step 1
The null space of matrix A is B such that AB=0 for all B is not null.
Given \(A=\begin{bmatrix}2 & 1 \\3 & 2 \end{bmatrix}\)
\(B=\begin{bmatrix}x_1 \\ x_2 \end{bmatrix}\)
\(\begin{bmatrix}2 & 1 \\3 & 2 \end{bmatrix}\begin{bmatrix}x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix}0 \\ 0 \end{bmatrix}\)
Step 2
To findout nullspace , writing the matrix in Augment form and convert the, to echelon form.
\(\begin{bmatrix}2 & 1&|&0 \\3 & 2&|&0 \end{bmatrix}\)
\(R_2 \rightarrow R_2 - \frac{3}{2}R_1\)
\(=\begin{bmatrix}2 & 1&|&0 \\0 & \frac{1}{2}&|&0 \end{bmatrix}\)
\(2x_1+x_2=0 \text{ or } \frac{1}{2}x_2=0\)
We know \(x_1,x_2\) cant be zero since B cant be null
\(\therefore 2x_1+x_2=0\)
Assume \(x_2=C \Rightarrow x_1=\frac{-c}{2}\)
\(\therefore \text{ Null space } B=\begin{bmatrix}-\frac{c}{2} \\ c \end{bmatrix} \forall c \in \mathbb{R}\)
0

Relevant Questions

asked 2021-02-21
Determine the null space of each of the following matrices:
\(\begin{bmatrix}1 & 1&-1&2 \\2 & 2&-3&1\\-1&-1&0&-5 \end{bmatrix}\)
asked 2021-03-06
Determine the null space of each of the following matrices:
\(\begin{pmatrix}1 & 3 &-4 \\ 2 & -1 & -1 \\ -1 & -3 &4 \end{pmatrix}\)
asked 2020-12-15
Determine the null space of each of the following matrices:
\(\begin{pmatrix}1 & 2 &-3&-1 \\ -2 & -4 & 6 &3 \end{pmatrix}\)
asked 2021-02-04
Determine whether the given matrices are inverses of each other. \(A=\begin{bmatrix} 8 & 3 &-4 \\ -6 & -2 &3\\-3&1&1 \end{bmatrix} \text{ and } B=\begin{bmatrix} -1 & -1 &-1 \\ 3 & 4 &0\\0&1&-2 \end{bmatrix}\)
asked 2020-10-27
For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication.
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}\)
asked 2021-01-28
For each of the following matrices, determine a basis for each of the subspaces R(AT), N(A), R(A), and N(AT):
\(A=\begin{bmatrix}3 & 4 \\6 & 8 \end{bmatrix}\)
asked 2020-11-30
Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{#}=M^{-1}\)
asked 2020-11-12
Compute the LU factorization of each of the following matrices.
\(\begin{bmatrix}1 & 1&1 \\ 3 & 5&6\\-2&2&7 \end{bmatrix}\)
asked 2020-12-05
Find the inverse of each of the following matrices.
\(\begin{bmatrix}1 & 0&1\\-1&1&1 \\ -1&-2&-3 \end{bmatrix}\)
asked 2020-11-09
Compute the LU factorization of each of the following matrices.
\(\begin{bmatrix}2 & 4 \\-2 & 1 \end{bmatrix}\)
...