Question

Solve begin{bmatrix}6 & -5&9 -4 & -5&3 end{bmatrix}=2X-5begin{bmatrix}2 & 1&-6 -6 & 6&3 end{bmatrix}

Matrices
ANSWERED
asked 2021-01-31
Solve \begin{bmatrix}6 & -5&9 \\-4 & -5&3 \end{bmatrix}=2X-5\begin{bmatrix}2 & 1&-6 \\-6 & 6&3 \end{bmatrix}

Answers (1)

2021-02-01

Step 1
Matrix addition and subtraction are same like adding and subtracting the given two numbers
Addition and subtraction is done with the same entries of the given two matrices
For example, if A and B are two matrices then addition is done as follows,
\(A=\begin{bmatrix}a & b \\c & d \end{bmatrix} \text{ and } B=\begin{bmatrix}e & f \\g & h \end{bmatrix}\text{Then } , A+B=\begin{bmatrix}a+e & b+f \\c+g & d+h \end{bmatrix}\)
Step 2
Now given,
\(\begin{bmatrix}6 & -5&9 \\-4 & -5&3 \end{bmatrix}=2X-5\begin{bmatrix}2 & 1&-6 \\-6 & 6&3 \end{bmatrix}\)


\(\begin{bmatrix}6 & -5&9 \\-4 & -5&3 \end{bmatrix}=2X-\begin{bmatrix}10 & 5&-30 \\-30 & 30&15 \end{bmatrix} 2X=\begin{bmatrix}6 & -5&9 \\-4 & -5&3 \end{bmatrix}+\begin{bmatrix}10 & 5&-30 \\-30 & 30&15 \end{bmatrix} 2X=\begin{bmatrix}16 & 0&-21 \\-34 & 25&18 \end{bmatrix} X=\frac{1}{2}\begin{bmatrix}16 & 0&-21 \\-34 & 25&18 \end{bmatrix}\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-03-09

Use the graphing calculator to solve if possible
\(A=\begin{bmatrix}1 & 0&5 \\1 & -5&7\\0&3&-4 \end{bmatrix}\\ B=\begin{bmatrix}3 & -5&3 \\2&3&1\\4&1&-3\end{bmatrix}\\ C=\begin{bmatrix}5 & 2&3 \\2& -1&0 \end{bmatrix}\\ D=\begin{bmatrix}5 \\-3\\4 \end{bmatrix}\)
Find the value in row 2 column 3 of \(AB-3B\)

asked 2021-08-07

Suppose that the augmented matrix for a system of linear equations has been reduced by row operations to the given row echelon form. Solve the system by back substitution. Assume that the variables are named \(\displaystyle{x}_{{1}},{x}_{{2}},\ldots\) from left to right.
\(\begin{bmatrix}1 & 1&-3&2&1 \\0&1&4&0&3\\0&0&0&1&2 \end{bmatrix}\)
image

asked 2021-01-17
Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.
asked 2021-01-04
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
\(A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}\)
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
...