 # Find parametric equations for the tangent line to the curve podnescijy 2021-11-20 Answered
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
$$\displaystyle{x}={1}+{2}\sqrt{{{t}}},\ {y}={t}^{{3}}-{t},\ {z}={t}^{{3}}+{t};\ {\left({3},{0},{2}\right)}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself. Heack1991

We're given parametric equation $$\displaystyle{x}={1}+{2}\sqrt{{{t}}},\ {y}={t}^{{3}}-{t}$$ and $$\displaystyle{z}={t}^{{3}}+{t}$$ and we're asked to solve for the parametric equations of the tangent line to the curve at the point (3,0,2)
Given parametric equations, we know that the vector equatiom tr(t) is equal to
$$\displaystyle{r}{\left({t}\right)}={<}{1}+{2}\sqrt{{{t}}},{t}^{{3}}-{t},{t}^{{3}}+{t}{>}$$
Solve for $$\displaystyle{r}'{\left({t}\right)}$$ by differentiating each of the components of r(t) with respect to t
$$\displaystyle{r}'{\left({t}\right)}={<}{\frac{{{1}}}{{\sqrt{{{t}}}}}},{3}{t}^{{2}}-{1},{3}{t}^{{2}}+{1}{>}$$
The parameter value corresponding to $$\displaystyle{\left({3},{0},{2}\right)}$$ is t=1. Plug in t=1 into $$\displaystyle{r}'{\left({t}\right)}$$ to solve for $$\displaystyle{r}'{\left({1}\right)}$$
$$\displaystyle{r}'{\left({1}\right)}={<}{\frac{{{1}}}{{\sqrt{{{1}}}}}},{3}{\left({1}\right)}^{{2}}-{1},{3}{\left({1}\right)}^{{2}}+{1}{>}$$
$$\displaystyle={<}{1},{2},{4}{>}$$
Recall from the textbook that parametric equations for a line through the point $$\displaystyle{\left({x}_{{0}},{y}_{{0}},{z}_{{0}}\right)}$$ and parallel to the direction vector $$\displaystyle{<}{a},{b},{c}{>}$$ are
$$\displaystyle{x}={x}_{{0}}+{a}{t}\ {y}={y}_{{0}}+{b}{t}\ {z}={z}_{{0}}+{c}{t}$$
Substitute $$\displaystyle{\left({x}_{{0}},{y}_{{0}},{z}_{{0}}\right)}={\left({3},{0},{2}\right)}$$ and $$\displaystyle{<}{a},{b},{c}\ge{<}{1},{2},{4}{>}$$ into x, y and z, respectively to solve for the parametric equations of the tangent line to the curve
$$\displaystyle{x}={3}+{\left({1}\right)}{t}={3}+{t}\ {y}={\left({0}\right)}+{\left({2}\right)}{t}={2}{t}\ {z}={\left({2}\right)}+{\left({4}\right)}{t}={2}+{4}{t}$$