Question

Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.A=begin{bmatrix}-1 -2-3 end{bmatrix} , B=begin{bmatrix}1 & 2 & 3 end{bmatrix}

Matrices
ANSWERED
asked 2020-12-16
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}

Expert Answers (1)

2020-12-17

Step 1
\(A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}\)
order of \(A = 3 \times 1\)
order of \(B = 1 \times 3\)
Step 2
a)AB
It is possible and order will be \(3 \times 3\)
\(\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix}\begin{bmatrix}1 & 2 & 3 \end{bmatrix}=\begin{bmatrix}-1 & -2&-3 \\-2& -4&-6\\-3&-6&-9 \end{bmatrix}\)
Step 3
b)BA
It is possible and order will be \(1 \times 1\)
\(\begin{bmatrix}1 & 2 & 3 \end{bmatrix}\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix}\)
\(=\begin{bmatrix}-1 & -4 & -9 \end{bmatrix}\)
\(=\begin{bmatrix}-14 \end{bmatrix}\)

38
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...