Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.A=begin{bmatrix}-1 -2-3 end{bmatrix} , B=begin{bmatrix}1 & 2 & 3 end{bmatrix}

Dolly Robinson 2020-12-16 Answered

Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
\(A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Aniqa O'Neill
Answered 2020-12-17 Author has 22389 answers

Step 1
\(A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}\)
order of \(A = 3 \times 1\)
order of \(B = 1 \times 3\)
Step 2
a)AB
It is possible and order will be \(3 \times 3\)
\(\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix}\begin{bmatrix}1 & 2 & 3 \end{bmatrix}=\begin{bmatrix}-1 & -2&-3 \\-2& -4&-6\\-3&-6&-9 \end{bmatrix}\)
Step 3
b)BA
It is possible and order will be \(1 \times 1\)
\(\begin{bmatrix}1 & 2 & 3 \end{bmatrix}\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix}\)
\(=\begin{bmatrix}-1 & -4 & -9 \end{bmatrix}\)
\(=\begin{bmatrix}-14 \end{bmatrix}\)

Not exactly what you’re looking for?
Ask My Question
38
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-03-09

Use the graphing calculator to solve if possible
\(A=\begin{bmatrix}1 & 0&5 \\1 & -5&7\\0&3&-4 \end{bmatrix}\\ B=\begin{bmatrix}3 & -5&3 \\2&3&1\\4&1&-3\end{bmatrix}\\ C=\begin{bmatrix}5 & 2&3 \\2& -1&0 \end{bmatrix}\\ D=\begin{bmatrix}5 \\-3\\4 \end{bmatrix}\)
Find the value in row 2 column 3 of \(AB-3B\)

asked 2020-12-07

Let \(A=\begin{bmatrix}1 & 2 \\-1 & 1 \end{bmatrix} \text{ and } C=\begin{bmatrix}-1 & 1 \\2 & 1 \end{bmatrix}\)
a)Find elementary matrices \(E_1 \text{ and } E_2\) such that \(C=E_2E_1A\)
b)Show that is no elementary matrix E such that \(C=EA\)

asked 2020-10-25

Solve for X in the equation, given
\(3X + 2A = B\)
\(A=\begin{bmatrix}-4 & 0 \\1 & -5\\-3&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 2 \\ -2 & 1 \\ 4&4 \end{bmatrix}\)

asked 2021-01-10

If possible , find \(2A-4B\)
\(A=\begin{bmatrix}-3 & 5 & -6 \\ 3 & -5 & -1 \end{bmatrix} , B=\begin{bmatrix}-6 & 8 & -3 \\ 3 & 6 & -2 \end{bmatrix}\)
a. \(\begin{bmatrix}-30 & 42 & -24 \\ 18 & 14 & -10 \end{bmatrix}\)
b. not possible
c. \(\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}\)
d. \(\begin{bmatrix} -9 & 13 & -9 \\ 6 & 1 & -3 \end{bmatrix}\)
c. \(\begin{bmatrix} 18 & -22 & 0 \\ -6 & -34 & 6 \end{bmatrix}\)

asked 2021-02-15

Given the two matrices,
\(A=\begin{bmatrix}1 & 2&3 \\1 & 1&2\\0&1&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 1&1 \\2 & 1&2\\3&1&2 \end{bmatrix}\)
(a) Find det A, det B , det(AB) , det(BA) , det(5A) , \(det A^T\) and \(det(B^6)\)
(b) Find adj A and adj B
(c) Find \(A^{-1}\) and \(B^{-1}\) using the adjoint matrices you found in part (b)

asked 2020-12-25

The \(2 \times 2 \) matrices A and B below are related to matrix C by the equation: \(C=3A-2B\). Which of the following is matrix C.
\(A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-1 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-18 & 5 \\10 & 1 \end{bmatrix}\)
\(\begin{bmatrix}18 & -5 \\-10 & -1 \end{bmatrix}\)
\(\begin{bmatrix}1 & -5 \\-2 & -1 \end{bmatrix}\)

asked 2020-10-20

In this problem, allow \(T_1: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) and \(T_2: \mathbb{R}^2 \rightarrow \mathbb{R}^2\) be linear transformations. Find \(Ker(T_1), Ker(T_2), Ker(T_3)\) of the respective matrices:
\(A=\begin{bmatrix}1 & -1 \\-2 & 0 \end{bmatrix} , B=\begin{bmatrix}1 & 5 \\-2 & 0 \end{bmatrix}\)

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question
...