Data points (x,\ y) \begin{array}{|c|c|}\hline x & & 2 & 4 & 6 & 8

pamangking8 2021-11-16 Answered
Data points \(\displaystyle{\left({x},\ {y}\right)}\)
\[\begin{array}{|c|c|}\hline x & & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \\ \hline y & 0.08 & 0.12 & 0.18 & 0.25 & 0.36 & 0.52 & 0.73 & 1.06 \\ \hline \end{array}\]
Draw scatter plots of \(\displaystyle{\left({x},\ {\ln{{y}}}\right)}\) and \(\displaystyle{\left({\ln{{x}}},\ {\ln{{y}}}\right)}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Steven Arredondo
Answered 2021-11-17 Author has 1214 answers

Step 1
In part (a), you already entered the x-coordinates under \(\displaystyle{L}_{{{1}}}\) and the y-coordinates under \(\displaystyle{L}_{{{2}}}\) in your graphing calculator.
Enter \(\displaystyle{L}_{{{3}}}={\ln{{\left({L}_{{{2}}}\right)}}}\) into your graphing calculator so \(\displaystyle{L}_{{{3}}}\) will fill in the values of \(\displaystyle{\ln{{y}}}\) for you. Then go to STAT PLOT, choose Plot2, and change YList to \(\displaystyle{L}_{{{3}}}\). Turn off Plot1 and turn on Plot2. Adjust the window to an appropiate veiwing rectangle and then press GRAPH:
image

Step 2
Enter \(\displaystyle{L}_{{{4}}}={\ln{{\left({L}_{{{1}}}\right)}}}\) into your graphing calculator so \(\displaystyle{L}_{{{4}}}\) will fill in the values of \(\displaystyle{\ln{{x}}}\) for you. Then go to STAT PLOT, choose Plot3, and change Xlist to \(\displaystyle{L}_{{{4}}}\) and Ylist to \(\displaystyle{L}_{{{3}}}\). Turn off Plot2 and turn on Plot3. Adjust the window to an appropriate viewing rectangle and then press GRAPH:
image
Have a similar question?
Ask An Expert
0
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-05-14
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.
\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)
a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)
MPa
State which estimator you used.
\(x\)
\(p?\)
\(\frac{s}{x}\)
\(s\)
\(\tilde{\chi}\)
b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).
MPa
State which estimator you used.
\(s\)
\(x\)
\(p?\)
\(\tilde{\chi}\)
\(\frac{s}{x}\)
c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)
MPa
Interpret this point estimate.
This estimate describes the linearity of the data.
This estimate describes the bias of the data.
This estimate describes the spread of the data.
This estimate describes the center of the data.
Which estimator did you use?
\(\tilde{\chi}\)
\(x\)
\(s\)
\(\frac{s}{x}\)
\(p?\)
d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)
e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)
State which estimator you used.
\(p?\)
\(\tilde{\chi}\)
\(s\)
\(\frac{s}{x}\)
\(x\)
asked 2021-06-09
Use the table of values of \(f(x, y)\) to estimate the values of \(fx(3, 2)\), \(fx(3, 2.2)\), and \(fxy(3, 2)\).
\(\begin{array}{|c|c|}\hline y & 1.8 & 2.0 & 2.2 \\ \hline x & & & \\ \hline 2.5 & 12.5 & 10.2 & 9.3 \\ \hline 3.0 & 18.1 & 17.5 & 15.9 \\ \hline 3.5 & 20.0 & 22.4 & 26.1 \\ \hline \end{array}\)
asked 2021-08-06

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round values to five decimal places.
\(\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 0 & 0.5 & 1 & 1.5 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline f(x) & 2.2 & 2.9 & 3.9 & 4.8 & 6.4 & 9.3 & 12.3 & 15 & 16.2 & 17.3 & 17.9 \\ \hline \end{array}\)

asked 2020-11-11

Use exponential regression to find a function that models the data. \(\begin{array}{|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 14 & 7.1 & 3.4 & 1.8 & 0.8 \\ \hline \end{array}\)

asked 2021-06-13
1. Who seems to have more variability in their shoe sizes, men or women?
a) Men
b) Women
c) Neither group show variability
d) Flag this Question
2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?
a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation
b) The estimate n-1 is never used to calculate the sample variance and standard deviation
c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population
d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)
asked 2021-05-21
The pmf of the amount of memory X (GB) in a purchased flash drive is given as the following.
\(\begin{array}{|c|c|}\hline x & 1 & 2 & 4 & 8 & 16 \\ \hline p(x) & 0.05 & 0.10 & 0.30 & 0.45 & 0.10 \\ \hline \end{array} \)
a) Compute E(X). (Enter your answer to two decimal places.) GB
b) Compute V(X) directly from the definition. (Enter your answer to four decimal places.) \(GB^{2}\)
c) Compute the standard deviation of X. (Round your answer to three decimal places.) GB
d) Compute V(X) using the shortcut formula. (Enter your answer to four decimal places.) \(GB^{2}\)

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...