# Solve the system of linear equations using matrices. 3x-2y-4=0 2y=12-x

Question
Matrices
Solve the system of linear equations using matrices.
3x-2y-4=0
2y=12-x

2021-01-26
STEP 1
System of linear equation
$$3x-2y=4$$
$$x+2y=12$$
Augmented matrix is
$$\begin{bmatrix}3 & -2 &|&4\\1 & 2 &|&12 \end{bmatrix}$$
Reduring the matrix to reduced
Row echelon form by
Row operations
$$R_1\rightarrow \frac{1}{3}R$$
$$\begin{bmatrix}1 & \frac{-2}{3} &|&\frac{4}{3}\\1 & 2 &|&12 \end{bmatrix}$$
$$R_2 \rightarrow R_2-R_1$$
$$\begin{bmatrix}1 & \frac{-2}{3} &|&\frac{4}{3}\\0 & \frac{8}{3} &|&\frac{32}{3} \end{bmatrix}$$
$$R_2 \rightarrow \frac{8}{3}R_2$$
$$\begin{bmatrix}1 & \frac{-2}{3} &|&\frac{4}{3}\\0 & 1 &|&4 \end{bmatrix}$$
Step2
$$R_1 \rightarrow R_1+\frac{2}{3}R_2$$
$$\begin{bmatrix}1 & 0 &|&4\\0 & 1 &|&4 \end{bmatrix}$$
$$\Rightarrow x =4$$
$$y=4$$
Thus solution of system is x=4 , y=4

### Relevant Questions

Solve the system of linear equations using matrices.
x+y+z=3
2x+3y+2z=7
3x-4y+z=4
For the given systems of linear equations, determine the values of $$b_1, b_2, \text{ and } b_3$$ necessary for the system to be consistent. (Using matrices)
$$x-y+3z=b_1$$
$$3x-3y+9z=b_2$$
$$-2x+2y-6z=b_3$$
Let a linear sytem of equations Ax=b where
$$A=\begin{pmatrix}4 & 2&-2 \\2 & 2&-3\\-2&-3&14 \end{pmatrix} , b=\begin{pmatrix}10 , 5 , 4 \end{pmatrix}^T$$
in case we solve this equation system by using Dolittle LU factorization method , find Z and X matrices
Solve the system of equations (Use matrices.):
x-2y+z = 16,
2x-y-z = 14,
3x+5y-4z =-10
Solve the systems of equations using matrices.
4x+5y=8
3x-4y=3
4x+y+z=3
-x+y=-11+2z
2y+2z=-1-x
Solve the system of equations using matrices.Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
$$\begin{cases}x+y-z=-2\\2x-y+z=5\\-x+2y+2z=1\end{cases}$$
Use a system of linear equations to find the quadratic function
$$f(x) = ax^22+bx+c$$
that satisfies the given conditions. Solve the system using matrices.
f(-2) = 6, f(1) = -3, f(2) = -14
f(x) =?
Solve the system of equations using matrices. Use the Gaussian elimination method with​ back-substitution.
x+4y=0 x+5y+z=1 5x-y-z=79
Write the matrix equation as a system of linear equations without matrices.
$$\begin{bmatrix}-1 & 0&1 \\0 & -1&0\\0&1&1 \end{bmatrix}\begin{bmatrix}x \\ y \\z \end{bmatrix}=\begin{bmatrix}-4 \\ 2\\4 \end{bmatrix}$$
$$\begin{bmatrix}-1 & 0&1 \\ 0 & -1 &0 \\ 0&1&1 \end{bmatrix}\begin{bmatrix}x \\ y \\ z \end{bmatrix}=\begin{bmatrix}-4 \\ 2 \\ 4 \end{bmatrix}$$