The 2 times 2 matrices A and B below are related to matrix C by the equation: C=3A-2B. Which of the following is matrix C. A=begin{bmatrix}3 & 5 -2 & 1 end{bmatrix} B=begin{bmatrix}-4 & 5 2 & 1 end{bmatrix} begin{bmatrix}-1 & 5 2 & 1 end{bmatrix} begin{bmatrix}-18 & 5 10 & 1 end{bmatrix} begin{bmatrix}18 & -5 -10 & -1 end{bmatrix} begin{bmatrix}1 & -5 -2 & -1 end{bmatrix}

Question
Matrices
asked 2020-12-25
The 2 \times 2 matrices A and B below are related to matrix C by the equation: C=3A-2B. Which of the following is matrix C.
\(A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-1 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-18 & 5 \\10 & 1 \end{bmatrix}\)
\(\begin{bmatrix}18 & -5 \\-10 & -1 \end{bmatrix}\)
\(\begin{bmatrix}1 & -5 \\-2 & -1 \end{bmatrix}\)

Answers (1)

2020-12-26
Step 1
We have to find matrix C by the equation C=3A−2B where matrices are given as:
\(A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
We know the operations of matrices,
If we multiply by any scalar to the matrix then it get multiplied in each elements example:
\(2\begin{bmatrix}a & b \\c & d \end{bmatrix}=\begin{bmatrix}2a & 2b \\2c & 2d \end{bmatrix}\)
Now for addition we add corresponding elements,
\(\begin{bmatrix}a & b \\c & d \end{bmatrix}+\begin{bmatrix}x & y \\z & w \end{bmatrix}=\begin{bmatrix}a+x & b+y \\c+z & d+w \end{bmatrix}\)
Step 2
Applying above rule for the given condition, we get
\(C=3A-2B\)
\(=3\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix}-2\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
\(=\begin{bmatrix}3 \times 3 & 3\times5 \\3\times (-2) & 3\times 1 \end{bmatrix}-\begin{bmatrix}2\times (-4) & 2\times 5 \\2\times 2 & 2\times 1 \end{bmatrix}\)
\(=\begin{bmatrix}9 & 15 \\-6 & 3 \end{bmatrix}-\begin{bmatrix}-8 & 10 \\4 & 2 \end{bmatrix}\)
\(=\begin{bmatrix}9-(-8) & 15-10 \\-6-4 & 3-2 \end{bmatrix}\)
\(=\begin{bmatrix}9+8 & 5 \\-10 & 1 \end{bmatrix}\)
\(=\begin{bmatrix}17 & 5 \\-10 & 1 \end{bmatrix}\)
Hence, value of C is \(\begin{bmatrix}17 & 5 \\-10 & 1 \end{bmatrix}\)
Note:
There is no suitable option for the given conditions.
0

Relevant Questions

asked 2021-01-31
Find the matrices:
a)A + B
b) A - B
c) -4A
d)3A + 2B
\(A=\begin{bmatrix}4 & 1 \\ 3 & 2 \end{bmatrix} ,B=\begin{bmatrix}5 & 9 \\ 0 & 7 \end{bmatrix}\)
asked 2021-02-02
Find the following matrices: a) A + B.
(b) A - B.
(c) -4A.
(d) 3A + 2B.
\(A=\begin{bmatrix}6 & 2 & -3 \end{bmatrix} , B=\begin{bmatrix}4 & -2 & 3 \end{bmatrix}\)
asked 2021-02-02
Given the matrices
\(A=\begin{bmatrix}-1 & 3 \\2 & -1 \\ 3&1 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -2 \\1 & 3 \\ 4 & -3 \end{bmatrix}\) find the \(3 \times 2\) matrix X that is a solution of the equation. 8X+A=B
asked 2021-01-17
Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.
asked 2021-01-02
Given the matrices
\(A=\begin{bmatrix}1& -1&2 \\3&4&5\\0&1&-1 \end{bmatrix} , B=\begin{bmatrix}0&2&1 \\3&0&5\\7&-6&0 \end{bmatrix} \text{ and } C=\begin{bmatrix}0&0&2 \\3&1&0\\0&-2&4 \end{bmatrix}\)
Determine the following
i)2A-B+2C ii)A+B+C iii)4C-2B+3A iv)\((A \times B)-C\)
asked 2021-01-30
Given the matrices
\(A=\begin{bmatrix}5 & 3 \\ -3 & -1 \\ -2 & -5 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -2 \\ 1 & 3 \\ 4 & -3 \end{bmatrix}\)
find the 3x2 matrix X that is a solution of the equation. 2X-A=X+B
X=?
asked 2021-02-13
Matrices C and D are shown below
C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix},D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}
What values of a and b will make the equation CD=I true?
a)a=0.5 , b=0.1
b)a=0.1 , b=0.5
c)a=-0.5 , b=-0.1
asked 2020-12-16
Consider the matrices
\(A=\begin{bmatrix}1 & -1 \\0 & 1 \end{bmatrix},B=\begin{bmatrix}2 & 3 \\1 & 5 \end{bmatrix},C=\begin{bmatrix}1 & 0 \\0 & 8 \end{bmatrix},D=\begin{bmatrix}2 & 0 &-1\\1 & 4&3\\5&4&2 \end{bmatrix} \text{ and } F=\begin{bmatrix}2 & -1 &0\\0 & 1&1\\2&0&3 \end{bmatrix}\)
a) Show that A,B,C,D and F are invertible matrices.
b) Solve the following equations for the unknown matrix X.
(i) \(AX^T=BC^3\)
(ii) \(A^{-1}(X-T)^T=(B^{-1})^T\)
(iii) \(XF=F^{-1}-D^T\)
asked 2020-11-08
Which of the following matrices is elementary matrix?
a) \(\begin{bmatrix}0 & 3 \\1 & 0 \end{bmatrix}\)
b) \(\begin{bmatrix}2 & 0 \\0 & 1 \end{bmatrix}\)
c) \(\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}\)
d) \(\begin{bmatrix}2 & 0 \\0 & 2 \end{bmatrix}\)
asked 2021-02-24
The product of matrix B and C is matrix D
\(\begin{bmatrix}2 & -1&4 \\g & 0&3\\2&h&0 \end{bmatrix} \times \begin{bmatrix}-1 & 5 \\4&f\\-3&1 \end{bmatrix}=\begin{bmatrix}i & 24 \\-16&-4\\4&e \end{bmatrix}\)
3.From the expression above, what should be the value of e?
4.From the expression above, what should be the value of g?
5.From the expression above, what should be the value of f?
...