Find the equation of the straight lines that pass through the followin

siroticuvj 2021-11-14 Answered
Find the equation of the straight lines that pass through the following sets of points:
a) \(\displaystyle{\left({2};\ {4}\right)};\ {\left({4};\ {7}\right)}\)
b) \(\displaystyle{\left({3};\ -{5}\right)};\ {\left(-{2};\ {2}\right)}\)
c) \(\displaystyle{\left({1};\ {3}\right)};\ {\left(-{3};\ {1}\right)}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

barcelodurazo0q
Answered 2021-11-15 Author has 526 answers

Step 1
Equation of line that passes through the points \(\displaystyle{\left({x}_{{{1}}},\ {y}_{{{1}}}\right)}\ \ {\left({x}_{{{2}}},\ {y}_{{{2}}}\right)}\) is:
\(\displaystyle{y}-{y}_{{{1}}}={\frac{{{\left({y}_{{{2}}}-{y}_{{{1}}}\right)}}}{{{\left({x}_{{{2}}}-{x}_{{{1}}}\right)}}}}{\left({\left({x}-{x}_{{{1}}}\right)}\right.}\)
where,
slope \(\displaystyle{m}={\frac{{{\left({y}_{{{2}}}-{y}_{{{1}}}\right)}}}{{{\left({x}_{{{2}}}-{x}_{{{1}}}\right)}}}}\)
Step 2
a) Given points \(\displaystyle{\left({2},\ {4}\right)}\ \ {\left({4},\ {7}\right)}\)
now
\(\displaystyle{x}_{{{1}}}={2}\)
\(\displaystyle{y}_{{{1}}}={4}\)
\(\displaystyle{x}_{{{2}}}={4}\)
\(\displaystyle{y}_{{{2}}}={7}\)
Equation of a line:
\(\displaystyle{y}-{4}={\frac{{{\left({7}-{4}\right)}}}{{{\left({4}-{2}\right)}}}}{\left({\left({x}-{2}\right)}\right.}\)
\(\displaystyle{y}-{4}={\frac{{{3}}}{{{2}}}}{\left({x}-{2}\right)}\)
\(\displaystyle{y}={\frac{{{3}}}{{{2}}}}{x}-{\frac{{{6}}}{{{2}}}}+{4}\)
\(\displaystyle{y}={\frac{{{3}}}{{{2}}}}{x}+{1}\)
Step 3
Given points \(\displaystyle{\left({3},\ -{5}\right)}\ \ {\left(-{2},\ {2}\right)}\)
now
\(\displaystyle{x}_{{{1}}}={3}\)
\(\displaystyle{y}_{{{1}}}=-{5}\)
\(\displaystyle{x}_{{{2}}}=-{2}\)
\(\displaystyle{y}_{{{2}}}={2}\)
Equation of a line:
\(\displaystyle{y}+{5}={\frac{{{\left({2}+{5}\right)}}}{{{\left(-{2}-{3}\right)}}}}{\left({x}-{3}\right)}\)
\(\displaystyle{y}+{5}=-{\frac{{{7}}}{{{5}}}}{\left({x}-{3}\right)}\)
\(\displaystyle{y}=-{\frac{{{7}}}{{{5}}}}{x}+{\frac{{{21}}}{{{5}}}}-{5}\)
\(\displaystyle{y}=-{\frac{{{7}}}{{{5}}}}{x}-{\frac{{{4}}}{{{5}}}}\)
Step 4
Given points \(\displaystyle{\left({1},\ {3}\right)}\ {\left(-{3},\ {1}\right)}\)
now
\(\displaystyle{x}_{{{1}}}={1}\)
\(\displaystyle{y}_{{{1}}}={3}\)
\(\displaystyle{x}_{{{2}}}=-{3}\)
\(\displaystyle{y}_{{{2}}}={1}\)
Equation of a line:
\(\displaystyle{y}-{3}={\frac{{{\left({1}-{3}\right)}}}{{{\left(-{3}-{1}\right)}}}}{\left({x}-{1}\right)}\)
\(\displaystyle{y}-{3}={\frac{{{1}}}{{{2}}}}{\left({x}-{1}\right)}\)
\(\displaystyle{y}={\frac{{{1}}}{{{2}}}}{x}-{\frac{{{1}}}{{{2}}}}+{3}\)
\(\displaystyle{y}={\frac{{{1}}}{{{2}}}}{x}+{\frac{{{5}}}{{{2}}}}\)

Have a similar question?
Ask An Expert
0
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...