To complete: The chart. Dont

tbbfiladelfia6l
2021-11-13
Answered

To complete: The chart. Dont

You can still ask an expert for help

George Woody

Answered 2021-11-14
Author has **16** answers

Step 1

The diameter of tennis ball is given as 6.5 cm.

To convert 6.5 cmto meters, use the relation

$1cm=0.01m$

Therefore,

$6.5cm=6.5\times 0.01m$

$=0.065m$

Now,$1cm=10mm$

Therefore,

$6.5cm=6.5\times 10mm$

$=65mm$

Now,$1cm=0.00001km$

Hence,

$6.5cm=6.5\times 0.00001km$

$=0.000065km$

The complete chart is shown below.

$$\begin{array}{|ccccc|}\hline & \text{Meters}& \text{Milimetres}& \text{Kilometres}& \text{Centimetres}\\ \text{Tennis ball diameter}& 0.065& 65& 0.000065& 6.5\\ \hline\end{array}$$

The diameter of tennis ball is given as 6.5 cm.

To convert 6.5 cmto meters, use the relation

Therefore,

Now,

Therefore,

Now,

Hence,

The complete chart is shown below.

asked 2021-10-21

Simplify and express the final result using positive exponents.

$\left(\frac{2{a}^{-1}}{3{b}^{4}}\right)}^{-3$

asked 2022-05-07

What is $2\sqrt{6}$ plus $4\sqrt{6}$?

asked 2022-07-09

Assume $0<r<1<p$ and $k,\lambda \ge 0$. Let the functions $y,z\in {C}^{1}(0,T)$ satisfy $y\ge 0$, $z>0$ and the system of differential inequalities

${z}^{\prime}\ge {y}^{p}$

${y}^{\prime}+\lambda y+k{z}^{\prime r}\ge z$

on $(0,T)$. Then $T<\infty $ ($T$ is the maximum lifetime of the solution).

${z}^{\prime}\ge {y}^{p}$

${y}^{\prime}+\lambda y+k{z}^{\prime r}\ge z$

on $(0,T)$. Then $T<\infty $ ($T$ is the maximum lifetime of the solution).

asked 2021-08-16

How can the graph of $y=-6\sqrt{x}$ can be obtained from the graph of $y=\sqrt{x}$ ?

asked 2022-06-13

Since there is a rational number between any two irrational numbers, so can we say that rational number and irrational number have the same cardinality?

asked 2022-06-18

Solve the system of linear inequalities with parameters

$\begin{array}{}\text{(*)}& \{\begin{array}{l}0\le \phantom{-2\phantom{\rule{thickmathspace}{0ex}}}x+2\phantom{\rule{thinmathspace}{0ex}}y-3\phantom{\rule{thinmathspace}{0ex}}b+3\phantom{\rule{thinmathspace}{0ex}}a\le 2\\ 0\le -2\phantom{\rule{thinmathspace}{0ex}}x-3\phantom{\rule{thinmathspace}{0ex}}y+6\phantom{\rule{thinmathspace}{0ex}}b\phantom{\phantom{\rule{thickmathspace}{0ex}}+3a\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}}\le 1\\ 0\le x\le 1\\ 0\le y\le 2\\ 0\le a\le 1\\ 0\le b\le 1\end{array}\end{array}$

Here x,y are unknown variables and a,b are parameters.

My attempt. By adding the inequalities with some coeficients I separated the variables and get the simple system

$\begin{array}{}\text{(**)}& \{\begin{array}{l}0\le y+6a\le 5,\\ 0\le -x+9a+3b\le 8.\end{array}\end{array}$

and I am able to solve it. But the solutions of the last system are not solution of the initial system!

Maple and wolframAlpha cant solve the system.

P.S.1 For $a=\frac{63}{100}$ and $b=\frac{59}{100}$ Maple gives the solutions

$\begin{array}{c}\{x=1,\frac{9}{50}\le y,y\le \frac{11}{25}\},\{x=-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100},\frac{9}{50}<y,y<\frac{11}{25}\},\{\frac{9}{50}<y,x<1,y<\frac{11}{25},-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100}<x\},\{y=\frac{11}{25},\frac{61}{100}\le x,x<1\},\{x=-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100},\frac{11}{25}<y,y<\frac{127}{150}\},\{\frac{11}{25}<y,x<-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},y<\frac{127}{150},-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100}<x\},\{x=-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},\frac{11}{25}<y,y<\frac{127}{150}\},\{x=0,\frac{127}{150}\le y,y\le \frac{47}{50}\},\{y=\frac{127}{150},x\le \frac{14}{75},0<x\},\{0<x,\frac{127}{150}<y,x<-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},y<\frac{47}{50}\},\\ \{x=-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},\frac{127}{150}<y,y<\frac{47}{50}\}\end{array}$

$\begin{array}{}\text{(*)}& \{\begin{array}{l}0\le \phantom{-2\phantom{\rule{thickmathspace}{0ex}}}x+2\phantom{\rule{thinmathspace}{0ex}}y-3\phantom{\rule{thinmathspace}{0ex}}b+3\phantom{\rule{thinmathspace}{0ex}}a\le 2\\ 0\le -2\phantom{\rule{thinmathspace}{0ex}}x-3\phantom{\rule{thinmathspace}{0ex}}y+6\phantom{\rule{thinmathspace}{0ex}}b\phantom{\phantom{\rule{thickmathspace}{0ex}}+3a\phantom{\rule{thickmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}}\le 1\\ 0\le x\le 1\\ 0\le y\le 2\\ 0\le a\le 1\\ 0\le b\le 1\end{array}\end{array}$

Here x,y are unknown variables and a,b are parameters.

My attempt. By adding the inequalities with some coeficients I separated the variables and get the simple system

$\begin{array}{}\text{(**)}& \{\begin{array}{l}0\le y+6a\le 5,\\ 0\le -x+9a+3b\le 8.\end{array}\end{array}$

and I am able to solve it. But the solutions of the last system are not solution of the initial system!

Maple and wolframAlpha cant solve the system.

P.S.1 For $a=\frac{63}{100}$ and $b=\frac{59}{100}$ Maple gives the solutions

$\begin{array}{c}\{x=1,\frac{9}{50}\le y,y\le \frac{11}{25}\},\{x=-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100},\frac{9}{50}<y,y<\frac{11}{25}\},\{\frac{9}{50}<y,x<1,y<\frac{11}{25},-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100}<x\},\{y=\frac{11}{25},\frac{61}{100}\le x,x<1\},\{x=-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100},\frac{11}{25}<y,y<\frac{127}{150}\},\{\frac{11}{25}<y,x<-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},y<\frac{127}{150},-3/2\phantom{\rule{thinmathspace}{0ex}}y+\frac{127}{100}<x\},\{x=-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},\frac{11}{25}<y,y<\frac{127}{150}\},\{x=0,\frac{127}{150}\le y,y\le \frac{47}{50}\},\{y=\frac{127}{150},x\le \frac{14}{75},0<x\},\{0<x,\frac{127}{150}<y,x<-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},y<\frac{47}{50}\},\\ \{x=-2\phantom{\rule{thinmathspace}{0ex}}y+\frac{47}{25},\frac{127}{150}<y,y<\frac{47}{50}\}\end{array}$

asked 2021-02-02

Determine graphically the solution set for the system of inequalities:

$x+y\le 4$

$2x+y\le 6$

$2x-y\ge -1$

$x\ge 0,y\ge 0$