Question

For the standard normal distribution, find the following probabilities. (a) Pr(0 leq Z leq 2.5)

Normal distributions
ANSWERED
asked 2021-01-28
For the standard normal distribution, find the following probabilities.
(a) \(Pr(0 \leq Z \leq 2.5)\)

Answers (1)

2021-01-29

Consider the probability \(P(0 < z < 2.5)\),
The probability that the z lies between 0 and 2.5 is equal to the area that lies under the curve from 0 and 2.5.
To find the probability look in the column headed by z for the value of 2.5 in appendix C.
In the column headed by A across 2.5 the corresponding value is 0.4938.
Thus the probability \(P(0 < z < 2.5)\) is \(A_{2.5}\).
So the value of \(A_{2.5}\) from the appendix is 0.4938.
Hence the value of \(P(0 \leq z \leq 2.5)\) is 0.4938.

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-05
Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);
Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.
Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).
Calculate your percentage of error in the estimation.
How do I solve this problem using extrapolation?
\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)
asked 2021-01-08
For the standard normal distribution, find the following probabilities.
(b) \(Pr(z>2.5)\)
asked 2020-11-05

Assume that the random variable Z follows standard normal distribution, calculate the following probabilities (Round to two decimal places)
a)\(P(z>1.9)\)
b)\(\displaystyle{P}{\left(−{2}\le{z}\le{1.2}\right)}\)
c)\(P(z\geq0.2)\)

asked 2020-11-26
For the standard normal distribution, find the following probabilities.
(с) \(Pr(z\leq 2.5)\)
asked 2021-05-18
The college physical education department offered an advanced first aid course last semester. The scores on the comprehensive final exam were normally distributed, and the z scores for some of the students are shown below:
Robert, 1.10 Juan, 1.70 Susan, -2.00
Joel, 0.00 Jan, -0.80 Linda, 1.60
Which of these students scored above the mean?
asked 2021-05-09
The college physical education department offered an advanced first aid course last semester. The scores on the comprehensive final exam were normally distributed, and the z scores for some of the students are shown below:
Robert, 1.10 Juan, 1.70 Susan, -2.00
Joel, 0.00 Jan, -0.80 Linda, 1.60
Which of these students scored above the mean?
asked 2020-12-15
Decide which of the following statements are true.
-Normal distributions are bell-shaped, but they do not have to be symmetric.
-The line of symmetry for all normal distributions is x = 0.
-On any normal distribution curve, you can find data values more than 5 standard deviations above the mean.
-The x-axis is a horizontal asymptote for all normal distributions.
asked 2021-01-28
Select all that apply. We show that our sample statistics have (at minimum) a somewhat normal distribution because
this allows us to use t and z critical values.
this allows us to use t and z tables for probabilities.
this tells us that our sampling is appropriate.
normal distributions are cool and that's all we talk about in this class.
asked 2021-05-03
Describe in words the surface whose equation is given. (assume that r is not negative.) \(\theta=\frac{\pi}{4}\)
a) The plane \(y = −z\) where y is not negative
b) The plane \(y = z\) where y and z are not negative
c) The plane \(y = x\) where x and y are not negative
d) The plane \(y = −x\) where y is not negative
e) The plane \(x = z\) where x and y are not negative
asked 2021-03-06
A normal distribution has \(\mu = 30\) and \(\sigma = 5\).
(c)Find the raw score corresponding to \(z =-2\).
...