Determine the null space of each of the following matrices: begin{pmatrix}1 & 3 &-4 2 & -1 & -1 -1 & -3 &4 end{pmatrix}

Determine the null space of each of the following matrices: begin{pmatrix}1 & 3 &-4 2 & -1 & -1 -1 & -3 &4 end{pmatrix}

Question
Matrices
asked 2021-03-06
Determine the null space of each of the following matrices:
\(\begin{pmatrix}1 & 3 &-4 \\ 2 & -1 & -1 \\ -1 & -3 &4 \end{pmatrix}\)

Answers (1)

2021-03-07
Step 1
Consider the given matrix:
\(\begin{pmatrix}1 & 3 &-4 \\ 2 & -1 & -1 \\ -1 & -3 &4 \end{pmatrix}\)
Now solve the system of equations below to find the null spaces:
\(\begin{pmatrix}1 & 3 &-4 \\ 2 & -1 & -1 \\ -1 & -3 &4 \end{pmatrix}\begin{pmatrix}x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0 \end{pmatrix}\)
Solve the above matrix using Gauss Elimination method . Find the row echelon form: \(R_2=R_2-2R_1\)
\(\begin{pmatrix}1 & 3 &-4 \\ 0& -7 & 7\\ -1 & -3 &4 \end{pmatrix}\begin{pmatrix}x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0 \end{pmatrix}\)
\(R_3=R_3+R_1\)
\(\begin{pmatrix}1 & 3 &-4 \\ 0& -7 & 7\\ 0 & 0 &0 \end{pmatrix}\begin{pmatrix}x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0 \end{pmatrix}\)
Step 2
we get equations:
\(-7x_2+7x_3=0\)
\(7x_2=7x_3\)
\(x_2=x_3\) And \(x_1+3x_2-4x_3=0\)
\(x_1+3x_2-4x_2=0\)
\(x_1=x_2\)
Therefore null space is given by:
\(\begin{pmatrix}x_2 \\ x_2 \\ x_2 \end{pmatrix}=x_2\begin{pmatrix}1 \\ 1 \\ 1 \end{pmatrix}\)
0

Relevant Questions

asked 2020-12-15
Determine the null space of each of the following matrices:
\(\begin{pmatrix}1 & 2 &-3&-1 \\ -2 & -4 & 6 &3 \end{pmatrix}\)
asked 2021-01-28
Write out the system of equations that corresponds to each of the following augmented matrices:
(a)\(\begin{pmatrix}3 & 2&|&8 \\1 & 5&|&7 \end{pmatrix}\)
(b)\(\begin{pmatrix}5 & -2&1&|&3 \\2 & 3&-4&|&0 \end{pmatrix}\)
(c)\(\begin{pmatrix}2 & 1&4&|&-1 \\4 & -2&3&|&4 \\5 & 2&6&|&-1 \end{pmatrix}\)
(d)\(\begin{pmatrix}4 & -3&1&2&|&4 \\3 & 1&-5&6&|&5 \\1 & 1&2&4&|&8\\5 & 1&3&-2&|&7 \end{pmatrix}\)
asked 2021-02-25
Determine the null space of each of the following matrices:
\(\begin{bmatrix}2 & 1 \\3 & 2 \end{bmatrix}\)
asked 2021-02-21
Determine the null space of each of the following matrices:
\(\begin{bmatrix}1 & 1&-1&2 \\2 & 2&-3&1\\-1&-1&0&-5 \end{bmatrix}\)
asked 2020-11-30

Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{\#}=M^{-1}\)

asked 2021-03-07
Use the definition of the matrix exponential to compute eA for each of the following matrices:
\(A=\begin{pmatrix}1 & 1 \\0 & 1 \end{pmatrix}\)
asked 2021-02-04
Determine whether the given matrices are inverses of each other. \(A=\begin{bmatrix} 8 & 3 &-4 \\ -6 & -2 &3\\-3&1&1 \end{bmatrix} \text{ and } B=\begin{bmatrix} -1 & -1 &-1 \\ 3 & 4 &0\\0&1&-2 \end{bmatrix}\)
asked 2020-11-23
Find the product AB of the two matrices listed below:
\(A=\begin{pmatrix}2 & 1&3 \\-2 & 2&4\\-1&-3&-4 \end{pmatrix}\)
\(B=\begin{pmatrix}-1 & -2\\1 & 2\\3&4 \end{pmatrix}\)
asked 2021-03-12
Let a linear sytem of equations Ax=b where
\(A=\begin{pmatrix}4 & 2&-2 \\2 & 2&-3\\-2&-3&14 \end{pmatrix} , b=\begin{pmatrix}10 , 5 , 4 \end{pmatrix}^T\)
in case we solve this equation system by using Dolittle LU factorization method , find Z and X matrices
asked 2020-11-17
Let \(A=\begin{pmatrix}2 &1 \\6 & 4 \end{pmatrix}\)
a) Express \(A^{-1}\) as a product of elementary matrices
b) Express A as a product of elementary matrices
...