Question

What mathematician was instrumental in the creation of the normal distribution? What application prompted this person to create the normal distribution?

Normal distributions
ANSWERED
asked 2020-11-06
What mathematician was instrumental in the creation of the normal distribution? What application prompted this person to create the normal distribution?

Answers (1)

2020-11-07
Carl Fredrich gauss was instrumental in creation of normal distribution. Due to his keen interest in mathematics of astronomy to obtain the orbit of a planetoid named Ceres, he used method of least squares which is a technique for experimental error.
In this method, x represents the error between true value and the value which obtained by experiment.
While theorizing the probability of a small error higher than that of a larger error Gauss came up with normal distribution to explain the probabilities of the random errors.
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-05
Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);
Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.
Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).
Calculate your percentage of error in the estimation.
How do I solve this problem using extrapolation?
\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)
asked 2021-02-27
The manager of the store in the preceding exercise calculated the residual for each point in the scatterplot and made a dotplot of the residuals.
The distribution of residuals is roughly Normal with a mean of $0 and standard deviation of $22.92.
The middle 95% of residuals should be between which two values? Use this information to give an interval of plausible values for the weekly sales revenue if 5 linear feet are allocated to the store's brand of men's grooming products.
asked 2021-06-15
The missing number in the series 1, 4, 27,____, 3125 is: 81 35 729 256 115
asked 2021-05-03
Describe in words the surface whose equation is given. (assume that r is not negative.) \(\theta=\frac{\pi}{4}\)
a) The plane \(y = −z\) where y is not negative
b) The plane \(y = z\) where y and z are not negative
c) The plane \(y = x\) where x and y are not negative
d) The plane \(y = −x\) where y is not negative
e) The plane \(x = z\) where x and y are not negative
asked 2021-01-28
Select all that apply. We show that our sample statistics have (at minimum) a somewhat normal distribution because
this allows us to use t and z critical values.
this allows us to use t and z tables for probabilities.
this tells us that our sampling is appropriate.
normal distributions are cool and that's all we talk about in this class.
asked 2020-11-05
Basic Computation:\(\hat{p}\) Distribution Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
(c) Suppose \(n = 48\) and \(p= 0.15\). Can we approximate the \(\hat{p}\) distribution by a normal distribution? Why? What are the values of \(\mu_{hat{p}}\) and \(\sigma_{p}\).?
asked 2021-05-18
The college physical education department offered an advanced first aid course last semester. The scores on the comprehensive final exam were normally distributed, and the z scores for some of the students are shown below:
Robert, 1.10 Juan, 1.70 Susan, -2.00
Joel, 0.00 Jan, -0.80 Linda, 1.60
Which of these students scored above the mean?
asked 2021-05-09
The college physical education department offered an advanced first aid course last semester. The scores on the comprehensive final exam were normally distributed, and the z scores for some of the students are shown below:
Robert, 1.10 Juan, 1.70 Susan, -2.00
Joel, 0.00 Jan, -0.80 Linda, 1.60
Which of these students scored above the mean?
asked 2021-03-04
Consider the marks of all 1st-year students on a statistics test. If the marks have a normal distribution with a mean of 72 and a standard deviation of 9, then the probability that a random sample of 10 students from this group have a sample mean between 71 and 73 is?
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
...