Use cramer's rule to determine the values of I_1, I_2, I_3 and I_4 begin{bmatrix}13.7 & -4.7 & -2.2 &0 -4.7 & 15.4 & 0 &-8.2 -2.2 & 0 & 25.4 &-22 0 & -8.2 & -22 &31.3 end{bmatrix}begin{bmatrix}I_1 I_2 I_3 I_4 end{bmatrix}=begin{bmatrix}6 -6 5 -9 end{bmatrix}

Use cramer's rule to determine the values of I_1, I_2, I_3 and I_4 begin{bmatrix}13.7 & -4.7 & -2.2 &0 -4.7 & 15.4 & 0 &-8.2 -2.2 & 0 & 25.4 &-22 0 & -8.2 & -22 &31.3 end{bmatrix}begin{bmatrix}I_1 I_2 I_3 I_4 end{bmatrix}=begin{bmatrix}6 -6 5 -9 end{bmatrix}

Question
Matrices
asked 2021-03-11
Use cramer's rule to determine the values of \(I_1, I_2, I_3\) and \(I_4\)
\(\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix}\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)

Answers (1)

2021-03-12
Step 1
Given matrices:
\(A=\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix},B=\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix},C=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
Multiplication of matrices A and B is possible only when number of columns of matrix A is equal to number of rows of matrix B.
Here order of matrix A is \(4 \times 4\) and order of matrix B is \(4 \times 1\) and hence the resultant matrix C has order \(4 \times 1\)
Step 2
Multiplication of matrices:
\(\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix}\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
\(\begin{bmatrix}(13.7)I_1-4.7I_2-2.2I_3+(0)I_4 \\ -4.7I_1+15.4I_2 + (0)I_3-8.2I_4 \\-2.2I_1+(0)I_2+25.4I_3-22I_4 \\ (0)I_1-8.2I_2 -22I_3+31.3I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
From the above equation of matrix, four simultaneous equations obtained are:
\(13.7I_1-4.7I_2-2.2I_3=6\)
\(-4.7I_1+15.4I_2-8.2I_4=-6\)
\(-2.2I_1+25.4I_3-22I_4=5\)
\(-8.2I_2 -22I_3+31.3I_4=-9\)
Solve the above simultaneous equations to get values of unknown variables
\(I_1=0.021\)
\(I_2=-0.908\)
\(I_3=-0.655\)
\(I_4=-0.986\)
0

Relevant Questions

asked 2020-11-24
Solve for Vt
\(\begin{bmatrix}20 & -20 &0&0&0 \\-20 & 41&-18&0&-3 \\ 0 &-18&28&-6&-4 \\0&0&-6&85&-2 \\ 0&-3&-4&-2&23 \end{bmatrix}\begin{bmatrix}i_t \\ i_1 \\ i_2 \\ i_3 \\ i_4 \end{bmatrix}=\begin{bmatrix}v_t \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}\)
asked 2021-06-06
Using givens rotation during QU factorization of the matrix A below, Make element (3,1) in A zero.
\([A]=\begin{bmatrix}3 & 4 & 5 \\1 & 7 & 8 \\ 2 & 6 & 9\end{bmatrix}\)
asked 2021-01-13
Find A+B
\(A=\begin{bmatrix}7 & -1 \\2 & 9 \\ -7 & -8 \end{bmatrix} ,B=\begin{bmatrix}2 & 5 \\-9 &0 \\ 8 & 6 \end{bmatrix}\)
a) \(\begin{bmatrix}5 & 4 \\11 & 9 \\ -15 & -2 \end{bmatrix}\)
b) \(\begin{bmatrix}5 & -6 \\11 &9 \\ -15 & -14 \end{bmatrix}\)
c) \(\begin{bmatrix}9 & -6 \\-7 & 9 \\ 1 & -14 \end{bmatrix}\)
d) \(\begin{bmatrix}9 & 4 \\-7 &9 \\ 1 & -2 \end{bmatrix}\)
asked 2021-01-10
If possible , find 2A-4B
\(A=\begin{bmatrix}-3 & 5 & -6 \\ 3 & -5 & -1 \end{bmatrix} , B=\begin{bmatrix}-6 & 8 & -3 \\ 3 & 6 & -2 \end{bmatrix}\)
a. \(\begin{bmatrix}-30 & 42 & -24 \\ 18 & 14 & -10 \end{bmatrix}\)
b. not possible
c. \(\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}\)
d. \(\begin{bmatrix} -9 & 13 & -9 \\ 6 & 1 & -3 \end{bmatrix}\)
c. \(\begin{bmatrix} 18 & -22 & 0 \\ -6 & -34 & 6 \end{bmatrix}\)
asked 2021-02-23
Solid NaBr is slowly added to a solution that is 0.010 M inCu+ and 0.010 M in Ag+. (a) Which compoundwill begin to precipitate first? (b) Calculate [Ag+] when CuBr justbegins to precipitate. (c) What percent of Ag+ remains in solutionat this point?
a) AgBr: \(\displaystyle{\left({0.010}+{s}\right)}{s}={4.2}\cdot{10}^{{-{8}}}\) \(\displaystyle{s}={4.2}\cdot{10}^{{-{9}}}{M}{B}{r}\) needed form PPT
CuBr: \(\displaystyle{\left({0.010}+{s}\right)}{s}={7.7}\cdot{\left({0.010}+{s}\right)}{s}={7.7}\cdot{10}^{{-{13}}}\) Ag+=\(\displaystyle{1.8}\cdot{10}^{{-{7}}}\)
b) \(\displaystyle{4.2}\cdot{10}^{{-{6}}}{\left[{A}{g}+\right]}={7.7}\cdot{10}^{{-{13}}}\) [Ag+]\(\displaystyle={1.8}\cdot{10}^{{-{7}}}\)
c) \(\displaystyle{\frac{{{1.8}\cdot{10}^{{-{7}}}}}{{{0.010}{M}}}}\cdot{100}\%={0.18}\%\)
asked 2020-11-08
Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of \(\alpha = 0.05\). Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.) Lemons and Car Crashes Listed below are annual data for various years. The data are weights (metric tons) of lemons imported from Mexico and U.S. car crash fatality rates per 100,000 population [based on data from “The Trouble with QSAR (or How I Learned to Stop Worrying and Embrace Fallacy),” by Stephen Johnson, Journal of Chemical Information and Modeling, Vol. 48, No. 1]. Is there sufficient evidence to conclude that there is a linear correlation between weights of lemon imports from Mexico and U.S. car fatality rates? Do the results suggest that imported lemons cause car fatalities? \(\begin{matrix} \text{Lemon Imports} & 230 & 265 & 358 & 480 & 530\\ \text{Crashe Fatality Rate} & 15.9 & 15.7 & 15.4 & 15.3 & 14.9\\ \end{matrix}\)
asked 2020-11-11

Use exponential regression to find a function that models the data. \(\begin{array}{|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 14 & 7.1 & 3.4 & 1.8 & 0.8 \\ \hline \end{array}\)

asked 2021-03-10
Use Cramer's rule to solve the given system of linear equations.
\(\displaystyle{x}_{{{1}}}-{x}_{{{2}}}+{4}{x}_{{{3}}}=-{2}\)
\(\displaystyle-{8}{x}_{{{1}}}+{3}{x}_{{{2}}}+{x}_{{{3}}}={0}\)
\(\displaystyle{2}{x}_{{{1}}}-{x}_{{{2}}}+{x}_{{{3}}}={6}\)
asked 2021-02-25
Use the matrices AA and BB below instead of those in your text.
\(A=\begin{bmatrix}-6 & -1 \\ -3 & -4 \end{bmatrix} B=\begin{bmatrix} -1 & 3 \\ -5 & -8 \end{bmatrix}\) 1) 2A+B=? 2)A-4B=?
asked 2020-10-26
Use the matrix P to determine if the matrices A and A' are similar.
\(P=\begin{bmatrix}-1 & -1 \\1& 2 \end{bmatrix}, A=\begin{bmatrix}14 & 9 \\-20 & -13 \end{bmatrix} \text{ and } A'=\begin{bmatrix}3 & -2 \\2 & -2 \end{bmatrix}\)
\(P^{-1}=?\)
\(P^{-1}AP=?\)
Are they similar?
"Yes, they are similar" or "No, they are not similar"
...