Question

Use cramer's rule to determine the values of I_1, I_2, I_3 and I_4 begin{bmatrix}13.7 & -4.7 & -2.2 &0 -4.7 & 15.4 & 0 &-8.2 -2.2 & 0 & 25.4 &-22 0 & -8.2 & -22 &31.3 end{bmatrix}begin{bmatrix}I_1 I_2 I_3 I_4 end{bmatrix}=begin{bmatrix}6 -6 5 -9 end{bmatrix}

Matrices
ANSWERED
asked 2021-03-11
Use cramer's rule to determine the values of \(I_1, I_2, I_3\) and \(I_4\)
\(\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix}\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)

Answers (1)

2021-03-12
Step 1
Given matrices:
\(A=\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix},B=\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix},C=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
Multiplication of matrices A and B is possible only when number of columns of matrix A is equal to number of rows of matrix B.
Here order of matrix A is \(4 \times 4\) and order of matrix B is \(4 \times 1\) and hence the resultant matrix C has order \(4 \times 1\)
Step 2
Multiplication of matrices:
\(\begin{bmatrix}13.7 & -4.7 & -2.2 &0 \\ -4.7 & 15.4 & 0 &-8.2 \\-2.2 & 0 & 25.4 &-22 \\ 0 & -8.2 & -22 &31.3 \end{bmatrix}\begin{bmatrix}I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
\(\begin{bmatrix}(13.7)I_1-4.7I_2-2.2I_3+(0)I_4 \\ -4.7I_1+15.4I_2 + (0)I_3-8.2I_4 \\-2.2I_1+(0)I_2+25.4I_3-22I_4 \\ (0)I_1-8.2I_2 -22I_3+31.3I_4 \end{bmatrix}=\begin{bmatrix}6 \\ -6 \\ 5 \\-9 \end{bmatrix}\)
From the above equation of matrix, four simultaneous equations obtained are:
\(13.7I_1-4.7I_2-2.2I_3=6\)
\(-4.7I_1+15.4I_2-8.2I_4=-6\)
\(-2.2I_1+25.4I_3-22I_4=5\)
\(-8.2I_2 -22I_3+31.3I_4=-9\)
Solve the above simultaneous equations to get values of unknown variables
\(I_1=0.021\)
\(I_2=-0.908\)
\(I_3=-0.655\)
\(I_4=-0.986\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-11-24
Solve for Vt
\(\begin{bmatrix}20 & -20 &0&0&0 \\-20 & 41&-18&0&-3 \\ 0 &-18&28&-6&-4 \\0&0&-6&85&-2 \\ 0&-3&-4&-2&23 \end{bmatrix}\begin{bmatrix}i_t \\ i_1 \\ i_2 \\ i_3 \\ i_4 \end{bmatrix}=\begin{bmatrix}v_t \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}\)
asked 2021-06-09
Use the table of values of \(f(x, y)\) to estimate the values of \(fx(3, 2)\), \(fx(3, 2.2)\), and \(fxy(3, 2)\).
\(\begin{array}{|c|c|}\hline y & 1.8 & 2.0 & 2.2 \\ \hline x & & & \\ \hline 2.5 & 12.5 & 10.2 & 9.3 \\ \hline 3.0 & 18.1 & 17.5 & 15.9 \\ \hline 3.5 & 20.0 & 22.4 & 26.1 \\ \hline \end{array}\)
asked 2021-01-13
Find A+B
\(A=\begin{bmatrix}7 & -1 \\2 & 9 \\ -7 & -8 \end{bmatrix} ,B=\begin{bmatrix}2 & 5 \\-9 &0 \\ 8 & 6 \end{bmatrix}\)
a) \(\begin{bmatrix}5 & 4 \\11 & 9 \\ -15 & -2 \end{bmatrix}\)
b) \(\begin{bmatrix}5 & -6 \\11 &9 \\ -15 & -14 \end{bmatrix}\)
c) \(\begin{bmatrix}9 & -6 \\-7 & 9 \\ 1 & -14 \end{bmatrix}\)
d) \(\begin{bmatrix}9 & 4 \\-7 &9 \\ 1 & -2 \end{bmatrix}\)
asked 2021-06-13
1. Who seems to have more variability in their shoe sizes, men or women?
a) Men
b) Women
c) Neither group show variability
d) Flag this Question
2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?
a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation
b) The estimate n-1 is never used to calculate the sample variance and standard deviation
c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population
d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)
...