# Find the area of the parallelogram with vertices A(-3,0), B(-1,7),

Find the area of the parallelogram with vertices A(-3,0), B(-1,7), C(9,6), and D(7,-1)

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

Phisecome
Area of parallelogram with vertices
(-3,0), (-1,7), (9,6) and (7,-1) is given by
$$\displaystyle{A}={\frac{{{1}}}{{{2}}}}{\left[{x}_{{1}}{y}_{{2}}+{x}_{{2}}{y}_{{3}}+{x}_{{3}}{y}_{{4}}+{x}_{{4}}{y}_{{1}}-{x}_{{2}}{y}_{{1}}-{x}_{{3}}{y}_{{1}}-{x}_{{3}}{y}_{{2}}-{x}_{{4}}{y}_{{3}}-{x}_{{1}}{y}_{{4}}\right]}$$
Here, $$\displaystyle{\left({x}_{{1}},{y}_{{1}}\right)}={\left(-{3},{0}\right)}$$
$$\displaystyle{\left({x}_{{2}},{y}_{{2}}\right)}={\left(-{1},{7}\right)}$$
$$\displaystyle{\left({x}_{{3}},{y}_{{3}}\right)}={\left({9},{6}\right)}$$
$$\displaystyle{\left({x}_{{4}},{y}_{{4}}\right)}={\left({7},-{1}\right)}$$
$$\displaystyle{A}={\frac{{{1}}}{{{2}}}}{\mid}{\left(-{3}\right)}{\left({7}\right)}+{\left(-{1}\right)}{6}+{9}\times{\left(-{1}\right)}+{7}\times{\left({0}\right)}-{9}\times{7}-{7}\times{6}-{\left(-{3}\right)}{\left(-{1}\right)}$$
$$\displaystyle={\frac{{{1}}}{{{2}}}}{\left|-{21}-{6}-{9}+{0}-{0}-{63}-{42}-{3}\right|}$$
$$\displaystyle={\frac{{{1}}}{{{2}}}}{\left({144}\right)}={72}$$