Refer to the following matrices. A=begin{bmatrix}2 & -3&7&-4 -11 & 2&6&7 6 & 0&2&7 5 & 1&5&-8 end{bmatrix} B=begin{bmatrix}3 & -1&2 0 & 1&4 3 & 2&1 -1

CheemnCatelvew 2021-01-17 Answered

Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Mitchel Aguirre
Answered 2021-01-18 Author has 27246 answers

Step 1
A matrix having a single row is a row matrix.
From the given matrices:
Matrix C i.e., \(\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix}\) is a single row matrix.
Hence, Matrix C is a row matrix.
Step 2
The transpose of matric C is:
\(C^T= \begin{bmatrix}1\\ 0\\3 \\4\\5 \end{bmatrix}\)

Not exactly what you’re looking for?
Ask My Question
11
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-02-13

Matrices C and D are shown below
\(C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix},D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}\)
What values of a and b will make the equation CD=I true?
a)a=0.5 , b=0.1
b)a=0.1 , b=0.5
c)a=-0.5 , b=-0.1

asked 2021-02-05

Given the following matrices:
\(A=\begin{bmatrix}1 & 2 &9 \\ -1 & 2 &0 \\ 0&0&4 \end{bmatrix} B=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix} C=\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix} D=\begin{bmatrix}1 \\ 2 \\ -4 \end{bmatrix}\)
Identify the following:
a) A-B
b) B+C
c) C-D
d) B-C

asked 2021-02-09

Compute the indicated matrices, if possible .
\(A^2B\)
let \(A=\begin{bmatrix}1 & 2 \\3 & 5 \end{bmatrix} \text{ and } B=\begin{bmatrix}2 & 0 & -1 \\3 & -3 & 4 \end{bmatrix}\)

asked 2020-12-16

Compute the following
a) \(\begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}\)
b) \(-5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}\)
c)\(\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T\)

asked 2021-10-20

Let
\(A=\left[ \begin{array}{rr}{3} & {-6} \\ {-1} & {2}\end{array}\right]\)
Construct a \(\displaystyle{2}\times{2}\) matrix B such that AB is the zero matrix. Use two different nonzero columns for B.

asked 2021-03-07

Find the following matrices:
a) \(A + B\).
(b) \(A - B\).
(c) \(-4A\).
\(A=\begin{bmatrix}2 & -10&-2 \\14 & 12&10\\4&-2&2 \end{bmatrix} , B=\begin{bmatrix}6 & 10&-2 \\0 & -12&-4\\-5&2&-2 \end{bmatrix}\)

asked 2021-02-22

Reduce the following matrices to row echelon form and row reduced echelon forms:
\((i)\begin{bmatrix}1 & p & -1 \\ 2 & 1 & 7 \\ -3 & 3 & 2 \end{bmatrix} (ii) \begin{bmatrix}p & -1 & 7&2 \\ 2 & 1 & -5 & 3 \\ 1 & 3 & 2 & 0 \end{bmatrix}\)
*Find also the ra
of these matrices.
*Notice: \(p=4\)

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question
...