# Multiply the matrices: begin{bmatrix}1 & -1 &02 & 1&3 end{bmatrix} begin{bmatrix}4 & -1 2 & 01&1 end{bmatrix}

Multiply the matrices:
$\left[\begin{array}{ccc}1& -1& 0\\ 2& 1& 3\end{array}\right]\left[\begin{array}{cc}4& -1\\ 2& 0\\ 1& 1\end{array}\right]$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

bahaistag
Step 1
Matrix multiplication:
$\left[\begin{array}{ccc}1& -1& 0\\ 2& 1& 3\end{array}\right]\left[\begin{array}{cc}4& -1\\ 2& 0\\ 1& 1\end{array}\right]$
Here we are given two matrices such that
$A=\left[\begin{array}{ccc}1& -1& 0\\ 2& 1& 3\end{array}\right]$
$B=\left[\begin{array}{cc}4& -1\\ 2& 0\\ 1& 1\end{array}\right]$
Here order of $A=2×3$
order of $B=3×2$
Step 2
$A×B$
$=\left[\begin{array}{ccc}1& -1& 0\\ 2& 1& 3\end{array}\right]\left[\begin{array}{cc}4& -1\\ 2& 0\\ 1& 1\end{array}\right]$
$=\left[\begin{array}{cc}1\cdot 4+\left(-1\right)\cdot 2+0\cdot 1& 1\cdot \left(-1\right)+\left(-1\right)\cdot 0+0\cdot 1\\ 2\cdot 4+1\cdot 2+3\cdot 1& 2\cdot \left(-1\right)+1\cdot 0+3\cdot 1\end{array}\right]$
$=\left[\begin{array}{cc}2& -1\\ 13& 1\end{array}\right]$
This is required ans.
Jeffrey Jordon