Consider the matrices A=begin{bmatrix}1 & -1 0 & 1 end{bmatrix},B=begin{bmatrix}2 & 3 1 & 5 end{bmatrix},C=begin{bmatrix}1 & 0 0 & 8 end{bmatrix},D=begin{bmatrix}2 & 0 &-11 & 4&35&4&2 end{bmatrix} text{ and } F=begin{bmatrix}2 & -1 &00 & 1&12&0&3 end{bmatrix} a) Show that A,B,C,D and F are invertible matrices. b) Solve the following equations for the unknown matrix X. (i) AX^T=BC^3 (ii) A^{-1}(X-T)^T=(B^{-1})^T (iii) XF=F^{-1}-D^T

Question
Matrices
Consider the matrices
$$A=\begin{bmatrix}1 & -1 \\0 & 1 \end{bmatrix},B=\begin{bmatrix}2 & 3 \\1 & 5 \end{bmatrix},C=\begin{bmatrix}1 & 0 \\0 & 8 \end{bmatrix},D=\begin{bmatrix}2 & 0 &-1\\1 & 4&3\\5&4&2 \end{bmatrix} \text{ and } F=\begin{bmatrix}2 & -1 &0\\0 & 1&1\\2&0&3 \end{bmatrix}$$
a) Show that A,B,C,D and F are invertible matrices.
b) Solve the following equations for the unknown matrix X.
(i) $$AX^T=BC^3$$
(ii) $$A^{-1}(X-T)^T=(B^{-1})^T$$
(iii) $$XF=F^{-1}-D^T$$

2020-12-17
Step 1
(a) A matrix S is invertible if the determinant of the matrix is not 0
That is , $$det(S) \neq 0$$
Step 2
Consider the matrix A
$$A=\begin{bmatrix}1 & -1 \\0 & 1 \end{bmatrix}$$
Obtain the detrminant of A
$$det(A)=1\cdot (1)-(-1)\cdot 0$$
$$=1+0$$
$$=1$$
$$\neq 0$$
Hence , A is invertible
Step 3
Consider the matrix B
$$A=\begin{bmatrix}2 & 3 \\1 & 5 \end{bmatrix}$$
Obtain the detrminant of B
$$det(B)=2\cdot (5)-(3)\cdot 1$$
$$=10-3$$
$$=7$$
$$\neq 0$$
Hence , B is invertible
Step 4
Consider the matrix C
$$C=\begin{bmatrix}1 & 0 \\0 & 8 \end{bmatrix}$$
Obtain the detrminant of A
$$det(C)=1\cdot (8)-(0)\cdot 0$$
$$=8$$
$$\neq 0$$
Hence , C is invertible
Step 5
Consider the matrix D
$$D=\begin{bmatrix}2 & 0 &-1\\1 & 4&3\\5&4&2 \end{bmatrix}$$
Obtain the detrminant of D
$$det(D)=2[8-12]-0[2-15]-1[4-20]$$
$$=2\cdot (-4)-(-16)$$
$$=8$$
$$\neq 0$$
Hence , D is invertible
Step 6
Consider the matrix F
$$F=\begin{bmatrix}2 & -1 &0\\0 & 1&1\\2&0&3 \end{bmatrix}$$
Obtain the detrminant of F
$$det(F)=2[3-0]+1[0-2]+0[0-2]$$
$$=2\cdot (3)+(-2)$$
$$=6-2=4$$
$$\neq 0$$
Hence , F is invertible
Thus, A, B, C, D and F are invertible matrices.

Relevant Questions

A random sample of $$\displaystyle{n}_{{1}}={16}$$ communities in western Kansas gave the following information for people under 25 years of age.
$$\displaystyle{X}_{{1}}:$$ Rate of hay fever per 1000 population for people under 25
$$\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}$$
A random sample of $$\displaystyle{n}_{{2}}={14}$$ regions in western Kansas gave the following information for people over 50 years old.
$$\displaystyle{X}_{{2}}:$$ Rate of hay fever per 1000 population for people over 50
$$\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}$$
(i) Use a calculator to calculate $$\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.$$ (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use $$\displaystyle\alpha={0.05}.$$
(a) What is the level of significance?
State the null and alternate hypotheses.
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}$$
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value $$\displaystyle>{0.250}$$
$$\displaystyle{0.125}<{P}-\text{value}<{0},{250}$$
$$\displaystyle{0},{050}<{P}-\text{value}<{0},{125}$$
$$\displaystyle{0},{025}<{P}-\text{value}<{0},{050}$$
$$\displaystyle{0},{005}<{P}-\text{value}<{0},{025}$$
P-value $$\displaystyle<{0.005}$$
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
Refer to the following matrices.
$$A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}$$
Identify the row matrix. Matrix C is a row matrix.
Consider the three following matrices:
$$A=\begin{bmatrix}1 & 0&0 \\0 & -1&0\\0&0&1 \end{bmatrix} , B=\begin{bmatrix}1 & 0&0 \\0 & 0&0\\0&0&-1 \end{bmatrix} \text{ and } C=\begin{bmatrix}0 & -i&0 \\i & 0&-i\\0&i&0 \end{bmatrix}$$
Calculate the Tr(ABC)
(a)1
(b)2
(c)2i
(d)0
compute the indicated matrices (if possible). D+BC
Let $$A=\begin{bmatrix}3 & 0 \\ -1 & 5 \end{bmatrix} , B=\begin{bmatrix}4 & -2 & 1 \\ 0 & 2 &3 \end{bmatrix} , C=\begin{bmatrix}1 & 2 \\ 3 & 4 \\ 5 &6 \end{bmatrix} , D=\begin{bmatrix}0 & -3 \\ -2 & 1 \end{bmatrix} , E=\begin{bmatrix}4 & 2 \end{bmatrix} , F=\begin{bmatrix}-1 \\ 2 \end{bmatrix}$$
Given the matrices
$$A=\begin{bmatrix}1& -1&2 \\3&4&5\\0&1&-1 \end{bmatrix} , B=\begin{bmatrix}0&2&1 \\3&0&5\\7&-6&0 \end{bmatrix} \text{ and } C=\begin{bmatrix}0&0&2 \\3&1&0\\0&-2&4 \end{bmatrix}$$
Determine the following
i)2A-B+2C ii)A+B+C iii)4C-2B+3A iv)$$(A \times B)-C$$
Given the matrices
$$A=\begin{bmatrix}5 & 3 \\ -3 & -1 \\ -2 & -5 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -2 \\ 1 & 3 \\ 4 & -3 \end{bmatrix}$$
find the 3x2 matrix X that is a solution of the equation. 2X-A=X+B
X=?
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
$$A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}$$
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
Consider the following two matrices. Why can't the product of the following two matrices be found? $$A=\begin{bmatrix}-1 & 2&3 \\4 & 0&5 \end{bmatrix} \text{ and } B=\begin{bmatrix}5 & 2 \\7 & -8 \end{bmatrix}$$
$$A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}$$
$$\begin{bmatrix}-1 & 5 \\2 & 1 \end{bmatrix}$$
$$\begin{bmatrix}-18 & 5 \\10 & 1 \end{bmatrix}$$
$$\begin{bmatrix}18 & -5 \\-10 & -1 \end{bmatrix}$$
$$\begin{bmatrix}1 & -5 \\-2 & -1 \end{bmatrix}$$
Let $$u=\begin{bmatrix}2 \\ 5 \\ -1 \end{bmatrix} , v=\begin{bmatrix}4 \\ 1 \\ 3 \end{bmatrix} \text{ and } w=\begin{bmatrix}-4 \\ 17 \\ -13 \end{bmatrix}$$ It can be shown that 4u-3v-w=0. Use this fact (and no row operations) to find a solution to the system Ax=b , where
$$A=\begin{bmatrix}2 & -4 \\5 & 17\\-1&-13 \end{bmatrix} , x=\begin{bmatrix}x_1 \\ x_2 \end{bmatrix} , b=\begin{bmatrix}4 \\ 1 \\ 3 \end{bmatrix}$$