Determine all 2 times 2 matrices A such that AB = BA for any 2 times 2 matrix B.

Determine all 2 times 2 matrices A such that AB = BA for any 2 times 2 matrix B.

Question
Matrices
asked 2021-03-04
Determine all \(2 \times 2\) matrices A such that AB = BA for any \(2 \times 2\) matrix B.

Answers (1)

2021-03-05
Step 1
Let \(A=\begin{bmatrix}a & b \\c & d \end{bmatrix} \text{ and } B=\begin{bmatrix}p & q \\ r & s \end{bmatrix}\) be any \(2 \times 2\) matrices.
Step 5
Find AB.
\(AB=\begin{bmatrix}a & b \\c & d \end{bmatrix}\begin{bmatrix}p & q \\ r & s \end{bmatrix}\)
\(=\begin{bmatrix}ap+br & aq+bs \\ cp+dr & cq+ds \end{bmatrix}\)
Find BA.
\(BA=\begin{bmatrix}p & q \\ r & s \end{bmatrix}\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
\(=\begin{bmatrix}ap+cq & bp+dq \\ ar+cs & br+ds \end{bmatrix}\) Equate the matrices AB=BA.
AB=BA
\(\begin{bmatrix}ap+br & aq+bs \\ cp+dr & cq+ds \end{bmatrix}=\begin{bmatrix}ap+cq & bp+dq \\ ar+cs & br+ds \end{bmatrix}\)
\(\begin{bmatrix}ap+br & aq+bs \\ cp+dr & cq+ds \end{bmatrix}-\begin{bmatrix}ap+cq & bp+dq \\ ar+cs & br+ds \end{bmatrix}= \begin{bmatrix}0 & 0 \\0 & 0\end{bmatrix}\)
\(\begin{bmatrix}br-cq & (a-d)q-b(p-s) \\ c(p-s)-r(a-d) & cq-br \end{bmatrix}=\begin{bmatrix}0 & 0 \\0 & 0\end{bmatrix}\)
Equate the matrices.
\(br-cq=0 \dots (1)\)
\((a-d)q-b(p-s)=0 \dots (2)\)
\(c(p-s)-r(a-d)=0 \dots (3)\)
\(cq-br=0 \dots(4)\)
From equation (1) and equation (4),
\(q=\frac{b}{c}r\)
Substitute \(q=\frac{b}{c}r\) in equation (2)
\((a-d)\frac{b}{c}e-b(p-s)=0\)
\(c= \frac{(a-d)r}{(p-s)}\)
Substitute \(q=\frac{b}{c}r\) in equation (2)
\((a-d)(\frac{b}{c}r)-b(p-s)=0\)
\(b=\frac{q(a-d)}{p-s}\)
Hence, the 2x2 matrix which satisfied AB=BA for any matrix B is
\(A=\begin{bmatrix}a & \frac{q(a-d)}{p-s} \\ \frac{r(a-d)}{p-s} & d \end{bmatrix}\)
0

Relevant Questions

asked 2021-01-04
In the following question there are statements which are TRUE and statements which are FALSE.
Choose all the statements which are FALSE.
1. If the number of equations in a linear system exceeds the number of unknowns, then the system must be inconsistent - thus no solution.
2. If B has a column with zeros, then AB will also have a column with zeros, if this product is defined.
3. If AB + BA is defined, then A and B are square matrices of the same size/dimension/order.
4. Suppose A is an n x n matrix and assume A^2 = O, where O is the zero matrix. Then A = O.
5. If A and B are n x n matrices such that AB = I, then BA = I, where I is the identity matrix.
asked 2020-11-10
If \(A=\begin{bmatrix}-2 & 1&-4 \\-2 & 4&-1 \\ 1 &-1 &-4 \end{bmatrix} \text{ and } B=\begin{bmatrix}-2 & 4&2 \\-4 & -1&1 \\ 4 &1 &1 \end{bmatrix}\)
then AB=?
BA=?
True or false : AB=BA for any two square matrices A and B of the same size.
asked 2020-12-02
Let A and B be \(n \times n\) matrices. Recall that the trace of A , written tr(A),equal
\(\sum_{i=1}^nA_{ii}\)
Prove that tr(AB)=tr(BA) and \(tr(A)=tr(A^t)\)
asked 2021-03-02
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
\(A=\begin{bmatrix}3 & -2 \\1 & 5\end{bmatrix} , B=\begin{bmatrix}0 & 0 \\5 & -6 \end{bmatrix}\)
asked 2020-12-16
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}
asked 2021-02-05
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA. \(A=\begin{bmatrix}1 & 2 &3&4\end{bmatrix} , B=\begin{bmatrix}1 \\ 2 \\ 3 \\ 4 \end{bmatrix}\)
asked 2020-11-05
Prove: If A and B are \(n \times n\) diagonal matrices, then
AB = BA.
asked 2021-03-09
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
\(A=\begin{bmatrix}1 & -1 &1\\5&0&-2\\3&-2&2\end{bmatrix} , B=\begin{bmatrix}1 & 1 &0\\1&-4&5\\3&-1&2\end{bmatrix}\)
asked 2021-03-04
Find the products AB and BA for the diagonal matrices.
\(A=\begin{bmatrix}2 & 0 \\0 & -3 \end{bmatrix} , B=\begin{bmatrix}-5 & 0 \\0 & 4 \end{bmatrix}\)
asked 2020-10-27
For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication.
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}\)
...