Express the definite integral as an infinite series and find its value to within an error of at most

$10}^{-4$

${\int}_{0}^{1}\mathrm{cos}\left({x}^{2}\right)dx$

Globokim8
2021-11-05
Answered

Express the definite integral as an infinite series and find its value to within an error of at most

$10}^{-4$

${\int}_{0}^{1}\mathrm{cos}\left({x}^{2}\right)dx$

You can still ask an expert for help

i1ziZ

Answered 2021-11-06
Author has **92** answers

Term-by-Term Differentiation and Integration

$F\left(x\right)=\sum _{n=0}^{\mathrm{\infty}}{a}_{n}{(x-c)}^{n}$

has radius of convergence$R>0$ . Then F is differentiable on $(c-R,c+R)$ . Furtehermore, we can integrate and differentiate term by term. For $x\in (c-R,c+R)$

$F}^{\prime}\left(x\right)=\sum _{n=1}^{\mathrm{\infty}}n{a}_{n}{(x-c)}^{n-1$

$\int F\left(x\right)dx=A+\sum _{n=0}^{\mathrm{\infty}}\frac{{a}_{n}}{n+1}{(x-c)}^{n+1}$ (A any constant)

These series have the same radius of convergence R

Here we need to find the value of$F\left(x\right)={\int}_{0}^{1}\mathrm{cos}\left({x}^{2}\right)dx$ we will use the expansion of the $\mathrm{cos}x$

From table 2, We have Maclaurin Series$f\left(x\right)=\mathrm{cos}x=\sum _{n=0}^{\mathrm{\infty}}{(-1)}^{n}\frac{{x}^{2n}}{\left(2n\right)!}=1-\frac{{x}^{2}}{2!}+\frac{{x}^{4}}{4!}-\frac{{x}^{6}}{6!}+\dots$ converges for for all x here x is replaced with $x}^{2$

$\mathrm{cos}x}^{2}=\sum _{n=0}^{\mathrm{\infty}}{(-1)}^{n}\frac{{\left({x}^{2}\right)}^{2n}}{\left(2n\right)!$

${\mathrm{cos}x}^{2}=\sum _{n=0}^{\mathrm{\infty}}{(-1)}^{n}\frac{{x}^{4n}}{\left(2n\right)!}dx$

$\int}_{0}^{1}{\mathrm{cos}x}^{2}dx=\sum _{n=0}^{\in}ft{(-1)}^{n}\frac{1}{(4n+1)\left(2n\right)!$

Now we need to find out F(1) error less than 0.0001

$\int}_{0}^{1}{\mathrm{cos}x}^{2}dx=\sum _{n=0}^{\mathrm{\infty}}{(-1)}^{n}\frac{1}{(4n+1)\left(2n\right)!$

Above is alternating series with

has radius of convergence

These series have the same radius of convergence R

Here we need to find the value of

From table 2, We have Maclaurin Series

Now we need to find out F(1) error less than 0.0001

Above is alternating series with

asked 2020-11-05

Use ana appropriate test to determine whether the series converges.

$\sum _{k=1}^{\mathrm{\infty}}(\frac{k!}{{20}^{k}{k}^{k}})$

asked 2020-11-24

Evaluating series. Evaluate the following infinite series or state that the series diverges.

$\sum _{k=1}^{\mathrm{\infty}}\frac{9}{(3k-2)(3k+1)}$

asked 2021-02-03

Given the series:

$9+\frac{117}{4}+\frac{1521}{16}+\frac{19773}{64}+...$

does this series converge or diverge? If the series converges, find the sum of the series.

does this series converge or diverge? If the series converges, find the sum of the series.

asked 2022-02-24

How to get the sum of the series

$\sum _{n=1}^{\mathrm{\infty}}\frac{1}{{(4{n}^{2}-1)}^{2}}$ ?

asked 2022-01-21

Prove

$\mathrm{csc}\left(x\right)=\sum _{k=-\mathrm{\infty}}^{\mathrm{\infty}}\frac{{(-1)}^{k}}{x+k\pi}$

asked 2020-10-23

Use the Integral Test to determine whether the infinite series is convergent.

$\sum _{n=1}^{\mathrm{\infty}}\frac{5}{{4}^{\mathrm{ln}n}}$

asked 2021-10-24

Test the series for convergence or divergence.

$\sum _{n=0}^{\mathrm{\infty}}\frac{{(-1)}^{n+1}}{\sqrt{n+4}}$