Given the matrices A=begin{bmatrix}-4 & -3&2 0 & 2 &-2 end{bmatrix} text{ and } B=begin{bmatrix}0 & -1&5 2 & -1 &2 end{bmatrix} A+B=?

Question
Matrices
asked 2021-02-23
Given the matrices \(A=\begin{bmatrix}-4 & -3&2 \\ 0 & 2 &-2 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -1&5 \\ 2 & -1 &2 \end{bmatrix}\) A+B=?

Answers (1)

2021-02-24
Step 1
Any two matrices can be added if they have same dimension. Here matrix A and matrix B have same dimension so it is possible to add these matrices.
Step 2
\(A=\begin{bmatrix}-4 & -3&2 \\ 0 & 2 &-2 \end{bmatrix}\)
\(B=\begin{bmatrix}0 & -1&5 \\ 2 & -1 &2 \end{bmatrix}\)
\(\therefore A+B=\begin{bmatrix}-4+0 & (-3)+(-1)&2+5 \\ 0+2 & 2+(-1) &(-2)+2 \end{bmatrix}\)
\(\begin{bmatrix}-4 & -4&7 \\ 2 & 1 &0 \end{bmatrix}\)
0

Relevant Questions

asked 2020-10-25
Solve for X in the equation, given
3X + 2A = B
\(A=\begin{bmatrix}-4 & 0 \\1 & -5\\-3&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 2 \\ -2 & 1 \\ 4&4 \end{bmatrix}\)
asked 2021-02-09
find which of the given matrices are nonsingular.
a) \(\begin{bmatrix}1 & 2 &-3 \\-1 & 2&3 \\ 0 &8&0 \end{bmatrix}\)
b)\(\begin{bmatrix}1 & 2 &-3 \\-1 & 2&3 \\ 0 &1&1 \end{bmatrix}\)
c) \(\begin{bmatrix}1 & 1 &2 \\-1 & 3&4 \\ -5 &7&8 \end{bmatrix}\)
d) \(\begin{bmatrix}1 & 1 &4&-1 \\1 & 2&3&2 \\ -1 &3&2&1\\-2&6&12&-4 \end{bmatrix}\)
asked 2021-01-30
Given the matrices
\(A=\begin{bmatrix}5 & 3 \\ -3 & -1 \\ -2 & -5 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -2 \\ 1 & 3 \\ 4 & -3 \end{bmatrix}\)
find the 3x2 matrix X that is a solution of the equation. 2X-A=X+B
X=?
asked 2021-02-02
Given the matrices
\(A=\begin{bmatrix}-1 & 3 \\2 & -1 \\ 3&1 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -2 \\1 & 3 \\ 4 & -3 \end{bmatrix}\) find the \(3 \times 2\) matrix X that is a solution of the equation. 8X+A=B
asked 2020-12-06
Show that A and B are not similar matrices
\(A=\begin{bmatrix}1 & 0 &1 \\ 2 & 0 &2 \\3&0&3 \end{bmatrix} , B=\begin{bmatrix}1 & 1 &0 \\ 2 & 2 &0 \\0&1&1 \end{bmatrix}\)
asked 2021-02-04
Determine whether the given matrices are inverses of each other. \(A=\begin{bmatrix} 8 & 3 &-4 \\ -6 & -2 &3\\-3&1&1 \end{bmatrix} \text{ and } B=\begin{bmatrix} -1 & -1 &-1 \\ 3 & 4 &0\\0&1&-2 \end{bmatrix}\)
asked 2021-02-09
Compute the indicated matrices, if possible .
A^2B
let \(A=\begin{bmatrix}1 & 2 \\3 & 5 \end{bmatrix} \text{ and } B=\begin{bmatrix}2 & 0 & -1 \\3 & -3 & 4 \end{bmatrix}\)
asked 2020-10-27
Formulate the method for adding partitioned matrices,
and verify your method by partitioning the matrices in two different ways and finding their sum.
\(A=\begin{bmatrix}1 & 3 & -1 \\ 2 & 1 & 0 \\ 2 & -3 &1 \end{bmatrix} \text{ and } B=\begin{bmatrix}3 & 2 & 1 \\ -2 & 3 & 1 \\ 4 & 1 &5 \end{bmatrix}\)
asked 2020-10-27
Let \(A=\begin{bmatrix}2 & -1&5 \\-3 & 4&0 \end{bmatrix} \text{ and } B=\begin{bmatrix}-3 & -4&2 \\-1 & 0&-5 \end{bmatrix}\)
Find each result.
3A+2B=?
A-3B=?
asked 2020-12-31
Find AB, given shown matrices,
If \(A=\begin{bmatrix}2 & 0 &4 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 \\ 3 \\ 7 \end{bmatrix}\)
...