Giventhe following matrices:A=begin{bmatrix}1 & 2 &9 -1 & 2 &0 0&0&4 end{bmatrix} B=begin{bmatrix}0 & -1 2 & 6 end{bmatrix} C=begin{bmatrix}2 & 1 0 & 0 end{bmatrix} D=begin{bmatrix}1 2 -4 end{bmatrix}Identify the following:a) A-Bb) B+Cc) C-Dd) B-C

vestirme4 2021-02-05 Answered

Given the following matrices:
\(A=\begin{bmatrix}1 & 2 &9 \\ -1 & 2 &0 \\ 0&0&4 \end{bmatrix} B=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix} C=\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix} D=\begin{bmatrix}1 \\ 2 \\ -4 \end{bmatrix}\)
Identify the following:
a) A-B
b) B+C
c) C-D
d) B-C

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Tasneem Almond
Answered 2021-02-06 Author has 21872 answers
Step 1
Given:
\(A=\begin{bmatrix}1 & 2 &9 \\ -1 & 2 &0 \\ 0&0&4 \end{bmatrix} B=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix} C=\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix} D=\begin{bmatrix}1 \\ 2 \\ -4 \end{bmatrix}\)
a) A-B
b) B+C
c) C-D
d) B-C
Step 2
Concept:
The number of rows and columns of the matrix is known as its order
Step 3
Solution:
Order of the given matrices:
\(A=\begin{bmatrix}1 & 2 &9 \\ -1 & 2 &0 \\ 0&0&4 \end{bmatrix} \Rightarrow \text{order }=3*3\)
\(B=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix} \Rightarrow \text{order }=2*2\)
\(C=\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{order }=2*2\)
\(D=\begin{bmatrix}1 \\ 2 \\ -4 \end{bmatrix} \Rightarrow \text{order }=3*1\)
Step 4
For A-B
The order of Matrix A and B are different. Hence, we can’t do addition and subtraction in these matrices
Step 5
For B+C
The order of Matrix B and C are the same. Hence, we can do addition and subtraction in these matrices
\(B+C=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix}+\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix}\)
\(B+C=\begin{bmatrix}0+2 & -1+1 \\ 2+0 & 6+0 \end{bmatrix}\)
\(B+C=\begin{bmatrix}2 &0 \\ 2 & 6 \end{bmatrix}\)
Step 6
For C-D
The order of Matrix C and D are different. Hence, we can’t do addition and subtraction in these matrices
Step 7
For B-C
The order of Matrix B and C are the same. Hence, we can do addition and subtraction in these matrices
\(B-C=\begin{bmatrix}0 & -1 \\ 2 & 6 \end{bmatrix}-\begin{bmatrix}2 & 1 \\ 0 & 0 \end{bmatrix}\)
\(B-C=\begin{bmatrix}0-2 & -1-1 \\ 2-0 & 6-0 \end{bmatrix}\)
\(B-C=\begin{bmatrix}-2 &-2 \\ 2 & 6 \end{bmatrix}\)
Not exactly what you’re looking for?
Ask My Question
3
 
content_user
Answered 2022-01-22 Author has 11827 answers

Answer is given below (on video)

0

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-02-13

Matrices C and D are shown below
\(C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix},D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}\)
What values of a and b will make the equation CD=I true?
a)a=0.5 , b=0.1
b)a=0.1 , b=0.5
c)a=-0.5 , b=-0.1

asked 2021-01-17

Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.

asked 2021-02-09

Compute the indicated matrices, if possible .
\(A^2B\)
let \(A=\begin{bmatrix}1 & 2 \\3 & 5 \end{bmatrix} \text{ and } B=\begin{bmatrix}2 & 0 & -1 \\3 & -3 & 4 \end{bmatrix}\)

asked 2020-12-16

Compute the following
a) \(\begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}\)
b) \(-5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}\)
c)\(\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T\)

asked 2021-03-07

Find the following matrices:
a) \(A + B\).
(b) \(A - B\).
(c) \(-4A\).
\(A=\begin{bmatrix}2 & -10&-2 \\14 & 12&10\\4&-2&2 \end{bmatrix} , B=\begin{bmatrix}6 & 10&-2 \\0 & -12&-4\\-5&2&-2 \end{bmatrix}\)

asked 2021-11-23
If we have a matrices
\[A=\begin{bmatrix}a & b \\c & d \end{bmatrix} \text{ and } e_{12}(\lambda)=\begin{bmatrix}1 & \lambda \\0 & 1\end{bmatrix}\]
then by doing product \[Ae_{12}(\lambda)=\begin{bmatrix}a & a\lambda+b \\c & c\lambda+d \end{bmatrix} \text{ and } e_{12}(\lambda)A=\begin{bmatrix}a+c\lambda & b+d\lambda \\c & d\end{bmatrix}\]
we can interpret that right multiplication by \(\displaystyle{e}_{{{12}}}\) to A gives a column-operation: add \(\displaystyle\lambda\)-times first column to the second column. In similar way, left multiplication by \(\displaystyle{e}_{{{12}}}{\left(\lambda\right)}\) to A gives row-operation on A.
Is there any conceptual (not computational, if any) way to see that elementary row and column operations on a matrix can be expressed as multiplication by elementary matrices on left or right, accordingly?
asked 2020-11-30

Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{\#}=M^{-1}\)

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question
...