Question

Find if possible the matrices: a) AB b) BA. A=begin{bmatrix}3 & -2 1 & 5 end{bmatrix} , B=begin{bmatrix}0 & 0 5 & -6 end{bmatrix}

Matrices
ANSWERED
asked 2021-02-25
Find if possible the matrices:
a) AB b) BA.
\(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)

Answers (1)

2021-02-26
Step 1
It is given that,
\(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
We have to find if possible the matrices:
a) AB b) BA.
Step 2
We have , \(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
a) AB
\(\Rightarrow AB=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix}\cdot \begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
\(\Rightarrow AB=\begin{bmatrix}3 \times 0 + (-2)5 & 3 \times 0 +(-2)(-6) \\ 1 \times 0 + 5 \times 5 & 1 \times 0 + 5(-6) \end{bmatrix}\)
\(\Rightarrow AB=\begin{bmatrix}-10 & 12 \\ 25 & -30 \end{bmatrix}\)
Hence , \(AB=\begin{bmatrix}-10 & 12 \\ 25 & -30 \end{bmatrix}\)
b) BA
\(\Rightarrow BA=\begin{bmatrix} 0 & 0 \\ 5 & -6 \end{bmatrix}\cdot \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}\)
\(\Rightarrow BA=\begin{bmatrix} 0 \times 3 + 0 \times 1 & 0 \times (-2) +0 \times 5 \\ 5 \times 3 + (-6) \times 1 & 5 \times (-2) + (-6) \times 5 \end{bmatrix}\)
\(\Rightarrow BA=\begin{bmatrix} 0 & 0 \\ 9 & -40 \end{bmatrix}\)
Hence , \(BA=\begin{bmatrix} 0 & 0 \\ 9 & -40 \end{bmatrix}\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...