Find if possible the matrices: a) AB b) BA. A=begin{bmatrix}3 & -2 1 & 5 end{bmatrix} , B=begin{bmatrix}0 & 0 5 & -6 end{bmatrix}

Question
Matrices
asked 2021-02-25
Find if possible the matrices:
a) AB b) BA.
\(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)

Answers (1)

2021-02-26
Step 1
It is given that,
\(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
We have to find if possible the matrices:
a) AB b) BA.
Step 2
We have , \(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
a) AB
\(\Rightarrow AB=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix}\cdot \begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
\(\Rightarrow AB=\begin{bmatrix}3 \times 0 + (-2)5 & 3 \times 0 +(-2)(-6) \\ 1 \times 0 + 5 \times 5 & 1 \times 0 + 5(-6) \end{bmatrix}\)
\(\Rightarrow AB=\begin{bmatrix}-10 & 12 \\ 25 & -30 \end{bmatrix}\)
Hence , \(AB=\begin{bmatrix}-10 & 12 \\ 25 & -30 \end{bmatrix}\)
b) BA
\(\Rightarrow BA=\begin{bmatrix} 0 & 0 \\ 5 & -6 \end{bmatrix}\cdot \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}\)
\(\Rightarrow BA=\begin{bmatrix} 0 \times 3 + 0 \times 1 & 0 \times (-2) +0 \times 5 \\ 5 \times 3 + (-6) \times 1 & 5 \times (-2) + (-6) \times 5 \end{bmatrix}\)
\(\Rightarrow BA=\begin{bmatrix} 0 & 0 \\ 9 & -40 \end{bmatrix}\)
Hence , \(BA=\begin{bmatrix} 0 & 0 \\ 9 & -40 \end{bmatrix}\)
0

Relevant Questions

asked 2021-03-02
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
\(A=\begin{bmatrix}3 & -2 \\1 & 5\end{bmatrix} , B=\begin{bmatrix}0 & 0 \\5 & -6 \end{bmatrix}\)
asked 2020-12-16
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}
asked 2021-01-02
Find if possible the matrices:
a) AB
b) BA
\(A=\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}\)
asked 2021-02-05
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA. \(A=\begin{bmatrix}1 & 2 &3&4\end{bmatrix} , B=\begin{bmatrix}1 \\ 2 \\ 3 \\ 4 \end{bmatrix}\)
asked 2021-02-27
Find if possible the matrices:
a. AB b. BA.
\(A=\begin{bmatrix}1 & -1&4 \\4 & -1&3\\2&0&-2 \end{bmatrix} , B=\begin{bmatrix}1 & 1&0 \\1 & 2&4\\1&-1&3 \end{bmatrix}\)
asked 2020-10-21
If \(A=\begin{bmatrix}1 & 1 \\3 & 4 \end{bmatrix} , B=\begin{bmatrix}2 \\1 \end{bmatrix} ,C=\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix},D=\begin{bmatrix}3 & 2 & 1 \end{bmatrix} \text{ and } E=\begin{bmatrix}2 & 3&4 \\1 & 2&-1 \end{bmatrix}\)
Find , if possible,
a) A+B , C-A and D-E b)AB, BA , CA , AC , DA , DB , BD , EB , BE and AE c) 7C , -3D and KE
asked 2021-01-07
Let \(A=\begin{bmatrix}-5 & -2 \\1 & 2 \end{bmatrix} ,B=\begin{bmatrix}-3 & -5 \\1 & 5 \end{bmatrix}\)
If possible , compute the following . If an answer does not exist , enter DNE.
AB,BA-?
True or False: AB=BA?
asked 2021-03-04
Find the products AB and BA for the diagonal matrices.
\(A=\begin{bmatrix}2 & 0 \\0 & -3 \end{bmatrix} , B=\begin{bmatrix}-5 & 0 \\0 & 4 \end{bmatrix}\)
asked 2021-02-15
Given the two matrices,
\(A=\begin{bmatrix}1 & 2&3 \\1 & 1&2\\0&1&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 1&1 \\2 & 1&2\\3&1&2 \end{bmatrix}\)
(a) Find det A, det B , det(AB) , det(BA) , det(5A) , \(det A^T\) and \(det(B^6)\)
(b) Find adj A and adj B
(c) Find \(A^{-1} and B^{-1} using the adjoint matrices you found in part (b)
asked 2021-03-01
Matrices A and B are defined as follows, Find the product: BA \(A=\begin{bmatrix}1 & 2 & 3 \end{bmatrix} B= \begin{bmatrix}4 \\ 5 \\ 6 \end{bmatrix}\)
...