# The graph y=-2\left(\frac{3}{2}-e^{3-x}\right) by: a) Performing the n

Bevan Mcdonald 2021-10-31 Answered
The graph $y=-2\left(\frac{3}{2}-{e}^{3-x}\right)$ by:
a) Performing the necessary algebra so that the function is in the proper form (i.e., the transformations are in the proper order).
b) Listing the transformations in the order that they are to be applied.
c) Marking the key point and horizontal asymptote.
You can still ask an expert for help

Expert Community at Your Service

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Available 24/7
• Math expert for every subject
• Pay only if we can solve it

## Expert Answer

Luvottoq
Answered 2021-11-01 Author has 95 answers

a) Rewrite the given function as
$f\left(x\right)=-3+2×{e}^{-\left(x-3\right)}$
Now, $f\left(x\right)$ is in the required form. b) $f\left(x\right)=-3+2×{e}^{-\left(x-3\right)}$,
$f\left(x\right)$ is obtained from the basic exponential function, $g\left(x\right)={e}^{-x}$, by the following sequence of transformations, in the given order:
1) shifting along x-axis: $x\to x-3$
2) Scaling the y-coordinate: $y\to 2y$
3) Translation vertically (below) by 2 units: $y\to y-2$
c) $f\left(x\right)=-3+2×{e}^{-\left(x-3\right)}$,
Key points:
1. $\underset{x\to -\mathrm{\infty }}{lim}f\left(x\right)=\mathrm{\infty };$
2. $\underset{x\to \mathrm{\infty }}{lim}f\left(x\right)=-3;$ (horizontal asymptote)
3. When
4. $y=0,$ when ${e}^{3-x}=1.5⇒3-x=\mathrm{ln}\left(1.5\right)$
$⇒x=3-\mathrm{ln}\left(1.5\right)$
$5.{y}^{\prime }=-2×{e}^{3-x}<0\mathrm{\forall }x.$ Thus $y=f\left(x\right)$
is monotonically decreasing on $\left(-\mathrm{\infty },\mathrm{\infty }\right)$
from $\mathrm{\infty }$ to $-3$ (asymptotic limit)
So, no vertical asymptote and the horizontal asymptote is $y=-3$

###### Not exactly what you’re looking for?

Expert Community at Your Service

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Available 24/7
• Math expert for every subject
• Pay only if we can solve it