# Calculate the following limits, if they exist, by using a combination of polar c

Calculate the following limits, if they exist, by using a combination of polar coordinates and de L’Hopital rule.
$\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{\mathrm{arctan}\left({x}^{2}+{y}^{2}\right)}{{x}^{2}+{y}^{2}}$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

l1koV
changing into polar coordinates
$x=r\mathrm{cos}\theta$
$y=r\mathrm{sin}\theta$
${x}^{2}+{y}^{2}={r}^{2}{\mathrm{cos}}^{2}\theta +{r}^{2}{\mathrm{sin}}^{2}\theta$
$={r}^{2}\left({\mathrm{cos}}^{2}\theta +{\mathrm{sin}}^{2}\theta \right)$
$={r}^{2}\left({\mathrm{cos}}^{2}\theta +{\mathrm{sin}}^{2}\theta =1\right)$
when $\left(x,y\right)\to \left(0,0\right)$
$r\to 0$
Now $\underset{\left(x,y\right)\to \left(0,0\right)}{lim}\frac{\mathrm{arctan}\left({x}^{2}+{y}^{2}\right)}{{x}^{2}+{y}^{2}}$
$=\underset{r\to 0}{lim}\frac{\mathrm{arctan}\left({r}^{2}\right)}{{r}^{2}}$
$=\underset{r\to 0}{lim}\frac{\frac{1}{1+{\left({r}^{2}\right)}^{2}}\cdot 2r}{2r}$ (applying L'Hopital rule)
$=\underset{r\to 0}{lim}\frac{1}{1+{r}^{4}}$
$=1$
Jeffrey Jordon