# Limit and Continuity Find the limit (if it exists) and discuss the continuity of

Limit and Continuity Find the limit (if it exists) and discuss the continuity of the function.
$\underset{\left(x,y,z\right)\to \left(1,3,\pi \right)}{lim}\mathrm{sin}\frac{xz}{2y}$
You can still ask an expert for help

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

gotovub
To evaluate the limit: $\underset{\left(x,y,z\right)\to \left(1,3,\pi \right)}{lim}\mathrm{sin}\frac{xz}{2y}$
Evaluating the above limit.
$\underset{\left(x,y,z\right)\to \left(1,3,\pi \right)}{lim}\mathrm{sin}\frac{xz}{2y}=\mathrm{sin}\left(\frac{1cdo\pi }{2\cdot 3}\right)$
$\mathrm{sin}\left(\frac{\pi }{6}\right)$
$=\frac{1}{2}$
Therefore, limit of the function is $\frac{1}{2}$.
We know that a function is continuous at a point x=a if:
$\underset{x\to a}{lim}f\left(x\right)=f\left(a\right)$
$\mathrm{sin}\left(\frac{xz}{2y}\right){\mid }_{\left(1,3,\pi \right)}=\mathrm{sin}\left(\frac{1\cdot \pi }{2\cdot 3}\right)$
$=\mathrm{sin}\frac{\pi }{6}$
$=\frac{1}{2}$
We can find that limit of function exists and also $\underset{\left(x,y,z\right)\to \left(1,3,\pi \right)}{lim}\mathrm{sin}\left(\frac{xz}{2y}\right)=\mathrm{sin}\left(\frac{xz}{2y}\right){\mid }_{\left(1,3,\pi \right)}$
Therefore, given function is continuous at given point.