The following two-way contingency table gives the breakdown of a town's population according to party affiliation (A, B, C, or None) and opinion on a

Jerold 2020-11-26 Answered
The following two-way contingency table gives the breakdown of a town's population according to party affiliation (A, B, C, or None) and opinion on a property tax issue:
Opinion
\(\begin{array}{|c|c|c|}\hline \text{Affiliation}&\text{Favors}&\text{Opposes}&\text{Undecided}\\\hline \text{A} &0.12&0.09&0.07\\ \hline \text{B}&0.16&0.12&0.14 \\ \hline \text{C}&0.04&0.03&0.06 \\ \hline \text{None}&0.08&0.06&0.03 \\ \hline \end{array}\\\)
A person is selected at random. What is the probability that the person is affiliated with parties A or B?

Want to know more about Two-way tables?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

yagombyeR
Answered 2020-11-27 Author has 23648 answers
Step 1
Given information-
We have given the table gives the breakdown of a town's population according to party affiliation (A, B, C, or None) and opinion on a property tax issue.
We have to find the probability that the person is affiliated with parties A or B. \(\begin{array}{|c|c|c|}\hline \text{Affiliation}&\text{Favors}&\text{Opposes}&\text{Undecided}&\text{Total}\\\hline \text{A} &0.12&0.09&0.07&0.28\\ \hline \text{B}&0.16&0.12&0.14&0.42 \\ \hline \text{C}&0.04&0.03&0.06&0.13\\ \hline \text{None}&0.08&0.06&0.03&0.17\\ \hline \text{Total}&0.4&0.3&0.3&1 \\ \hline \end{array}\\\)
Step 2
So,
\(P(A)=0.28, P(B)=0.42\)
Since both are independent events.
\(P(\text{the person is affiliated with parties A or B})=P(A)+P(B)\)
\(P(\text{the person is affiliated with parties A or B})=0.28+0.42=0.70\)
Hence , the probability that the person is affiliated with parties A or B is 0.70
Not exactly what you’re looking for?
Ask My Question
10
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-06-13
1. Who seems to have more variability in their shoe sizes, men or women?
a) Men
b) Women
c) Neither group show variability
d) Flag this Question
2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?
a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation
b) The estimate n-1 is never used to calculate the sample variance and standard deviation
c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population
d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)
asked 2020-12-29

The following two-way contingency table gives the breakdown of the population of adults in a town according to their highest level of education and whether or not they regularly take vitamins:
\(\begin{array}{|c|c|c|c|c|} \hline \text {Education}& \text {Use of vitamins takes} &\text{Does not take}\\ \hline \text {No High School Diploma} & 0.03 & 0.07 \\ \hline \text{High School Diploma} & 0.11 & 0.39 \\ \hline \text {Undergraduate Degree} & 0.09 & 0.27 \\ \hline \text {Graduate Degree} & 0.02 & 0.02 \\ \hline \end{array}\)
You select a person at random. What is the probability the person does not take vitamins regularly?

asked 2021-08-14
The two-way table gives the party affiliation of all members of the House of Representatives from eight different regions in the United States in July 2014 (there were 3 vacant seats at that time).
asked 2021-01-06
The following table gives a two-way classification of all basketball players at a state university who began their college careers between 2004 and 2008, based on gender and whether or not they graduated.
\(\begin{array}{|c|c|c|}\hline &\text{Graduated}&\text{Did not Graduate}\\\hline \text{Male} &129&51\\ \hline \text{Female}&134&36 \\ \hline \end{array}\\\)
If one of these players is selected at random, find the following probability.
Round your answer to four decimal places.
\(P(\text{graduated or male})=\) Enter your answer in accordance to the question statement
asked 2021-03-05
1950 randomly selected adults were asked if they think they are financially better off than their parents. The following table gives the two-way classification of the responses based on the education levels of the persons included in the survey and whether they are financially better off, the same as, or worse off than their parents
\(\begin{array}{|c|c|c|}\hline &\text{Less Than High School}&\text{High School}&\text{More Than High School}\\\hline \text{Better off} &140&440&430\\ \hline \text{Same as}&60&230&110\\ \hline \text{Worse off}&180&280&80\\ \hline\end{array}\\\)
Suppose one adult is selected at random from these 1950 adults. Find the following probablity.
Round your answer to three decimal places.
\(P(\text{more than high school or worse off})=?\)
asked 2021-09-16

If a student is selected at random, find the probability the student is a male given that it’s a senior. Use the two-way table below.

image
asked 2020-11-26
A random sample of 2,500 people was selected, and the people were asked to give their favorite season. Their responses, along with their age group, are summarized in the two-way table below.
\(\begin{array}{c|cccc|c} & \text {Winter} &\text{Spring}& \text {Summer } & \text {Fall}& \text {Total}\\ \hline \text {Children} & 30 & 0 & 170&0&200 \\ \text{Teens} & 150 & 75 & 250&25&500 \\ \text {Adults } & 250 & 250 & 250&250&1000 \\ \text {Seniors} & 300 & 150 & 50&300&800 \\ \hline \text {Total} & 730 & 475 & 720 &575&2500 \end{array}\)
Among those whose favorite season is spring, what proportion are adults?
\(a) \frac{250}{1000}\)
\(b) \frac{250}{2500}\)
\(c) \frac{475}{2500}\)
\(d) \frac{250}{475}\)
\(e) \frac{225}{475}\)
...