Question

Use the Laplace transform to solve the following initial value problem: 2y"+4y'+17y=3cos(2t) y(0)=y'(0)=0 a)take Laplace transform of both sides of th

Laplace transform
ANSWERED
asked 2021-02-08
Use the Laplace transform to solve the following initial value problem:
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
a)take Laplace transform of both sides of the given differntial equation to create corresponding algebraic equation and then solve for \(L\left\{y(t)\right\}\) b) Express the solution \(y(t)\) in terms of a convolution integral

Answers (1)

2021-02-09
Step 1
Given differntial equation is,
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
\(L\left[y"\right]=s^2L\left\{y(t)\right\}-sy(0)-y'(0)\)
\(L\left[y'\right]=sL\left\{y(t)\right\}-y(0)\)
\(L\left[\cos(at)\right]=\frac{s}{s^2+a^2}\)
Taking Laplace transform of equation (1),
\(2L\left[y"\right]+4L\left[y'\right]+17L\left[y\right]=3L\left[\cos(2t)\right]\)
\(s^2L\left\{y(t)\right\}-sy(0)-y'(0)+4\left[sL\left\{y(t)\right\}-y(0)\right]+17L\left\{y(t)\right\}=3L\left\{\cos(2t)\right\}\)
\(s^2Ly(t)+4sLy(t)+17Ly(t)=3x\frac{s}{s^2+4}\)
\((s^2+4s+17)L\left\{y(t)\right\}=\frac{3s}{s^2+4}\)
\(a) \therefore L\left\{y(t)\right\}=\frac{3s}{s^2+4} \times \frac{1}{s^2+4s+17}\)
\(b) y(t)=\int_0^t \left[3\cos(3w)\right] \times \left[e^{-2t} \cdot \sin \sqrt{13}w\right] dw\)
This is required Laplace transform.
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-06
Use the table of Laplace transform and properties to obtain the Laplace transform of the following functions. Specify which transform pair or property is used and write in the simplest form.
a) \(x(t)=\cos(3t)\)
b)\(y(t)=t \cos(3t)\)
c) \(z(t)=e^{-2t}\left[t \cos (3t)\right]\)
d) \(x(t)=3 \cos(2t)+5 \sin(8t)\)
e) \(y(t)=t^3+3t^2\)
f) \(z(t)=t^4e^{-2t}\)
asked 2021-02-19

Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \(\displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \(\displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \(\displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \(\displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \(\displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above

asked 2021-05-16
Use the Laplace transform to solve the given initial-value problem.
\(dy/dt-y=z,\ y(0)=0\)
asked 2021-03-07

use the Laplace transform to solve the initial value problem.
\(y"-3y'+2y=\begin{cases}0&0\leq t<1\\1&1\leq t<2\\ -1&t\geq2\end{cases}\)
\(y(0)=-3\)
\(y'(0)=1\)

asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2020-12-25

Let x(t) be the solution of the initial-value problem
(a) Find the Laplace transform F(s) of the forcing f(t).
(b) Find the Laplace transform X(s) of the solution x(t).
\(x"+8x'+20x=f(t)\)
\(x(0)=-3\)
\(x'(0)=5\)
\(\text{where the forcing } f(t) \text{ is given by }\)
\(f(t) = \begin{cases} t^2 & \quad \text{for } 0\leq t<2 ,\\ 4e^{2-t} & \quad \text{for } 2\leq t < \infty . \end{cases}\)

asked 2020-11-22

Find the Laplace transform of the given function
\(\begin{cases}t & 0,4\leq t<\infty \\0 & 4\leq t<\infty \end{cases}\)
\(L\left\{f(t)\right\} - ?\)

asked 2021-01-30

Use Laplace transform to find the solution of the IVP
\(2y'+y=0 , y(0)=-3\)
a) \(f{{\left({t}\right)}}={3}{e}^{{-{2}{t}}}\)
b)\(f{{\left({t}\right)}}={3}{e}^{{\frac{t}{{2}}}}\)
c)\(f{{\left({t}\right)}}={6}{e}^{{{2}{t}}}\)
d) \(f{{\left({t}\right)}}={3}{e}^{{-\frac{t}{{2}}}}\)

asked 2021-05-12
One property of Laplace transform can be expressed in terms of the inverse Laplace transform as \(L^{-1}\left\{\frac{d^nF}{ds^n}\right\}(t)=(-t)^n f(t)\) where \(f=L^{-1}\left\{F\right\}\). Use this equation to compute \(L^{-1}\left\{F\right\}\)
\(F(s)=\arctan \frac{23}{s}\)
asked 2021-05-16
Find the Laplace transform of the function \(L\left\{f^{(9)}(t)\right\}\)
...