Answer true or false to each of the statements in parts (a) and (b), and explain

geduiwelh 2021-10-23 Answered
Answer true or false to each of the statements in parts (a) and (b), and explain your reasoning.
a. Two data sets that have identical frequency distributions have identical relative-frequency distributions.
b. Two data sets that have identical relative-frequency distributions have identical frequency distributions.
c. Use your answers to parts (a) and (b) to explain why relativefrequency distributions are better than frequency distributions for comparing two data sets.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Yusuf Keller
Answered 2021-10-24 Author has 15569 answers
a) Two data sets have identical frequency distributions have identical relative-frequency distributions.
The statement is true as for tabulating the values of relative frequency, it makes the use of the values of the frequency tables. So, the two data set have identical frequency distributions have identical frequency distribution,
Therefore, the given statement is true as for tabulating the values of relative frequency, it makes the use of the values of the frequency tables.
b) Two data sets have identical relative-frequency distributions have identical frequency distributions.
The statement is false as the total number of observations can be different in the two cases. So, if two data sets have identical relative-frequency distributions then they do not have identical frequency distributions
Therefore, the given statement is false as the total number of observations can be different in the two cases.
Step 2
c) Relative frequency distribution is better than frequency distribution for comparing two data sets because the relative frequency always lies between 0 and 1 . Thus, it provide a standard for comparison but this is not so in frequency distribution of data.
Therefore, the Relative frequency distribution is better than frequency distribution for comparing two data sets because the relative frequency always lies between 0 and 1 . Thus, it provides a standard for comparison.
Have a similar question?
Ask An Expert
0
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-08-04
Answer true or false to each of the following statements and explain your answers.
a. Polynomial regression equations are useful for modeling more complex curvature in regression equations than can be handled by using the method of transformations.
b. A polynomial regression equation can be estimated using the method of least squares, the same method used in multiple linearregression.
c. The term “linear” in “multiple linear regression” refers to using only first-degree terms in the predictor variables.
asked 2021-09-24
Whether the statement is true or false "There is not one particular frequency distribution that is correct, but there are frequency distributions that are less desirable than others."
asked 2021-02-19

Determine whether each of the following statements is true or false, and explain why.If A and B are square matrices of the same size, then \(AB = BA\)

asked 2021-10-23
(True/False) The central limit theorem implies that:
1.a All variables have bell-shaped sample data distributions if a random sample contains at least 30 observations.
2.b. Population distributions are normal whenever the population size is large.
3.c. For large random samples, the sampling distribution of \(\displaystyle\overline{{{y}}}\) is approximately normal, regardless of the shape of the population distribution.
3.d. The sampling distribution looks more like the population distribution as the sample size increases.
asked 2021-11-21
Answer true or false to each of the following statement and explain your answer.
It is not always possible to fnd a power transformation of the response variable or the predictor variable (or both) that will straighten the scatterplot.
asked 2021-11-22
Answer true or false to each of the following statement and explain your answer.
In using the method of transformations, a transformation of the predictor variable will change the conditional distribution of the response variable.
asked 2021-11-19
Answer true or false to each of the following statement and explain your answer.
In using the method of transformations, we should only transform the predictor variable to straighten a scatterplot.

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...