text{Find the Laplace transform } F(s)=Lleft{f(t)right} text{of the function } f(t)=6+sin(3t) text{defined on the interval } tgeq0

Laplace transform
asked 2021-02-16
\(\text{Find the Laplace transform }\ F(s)=L\left\{f(t)\right\}\ \text{of the function }\ f(t)=6+\sin(3t) \ \text{defined on the interval }\ t\geq0\)

Answers (1)

\(\text{Step 1}\)
\(\text{From the given statement, the function is }\ f(t)=6+\sin(3t)\)
\(\text{Step 2}\)
\(\text{To find the Laplace transform of the function as follows.}\)
\(\text{Known fact: }\)
\(L(\sin(\omega t))=\frac{\omega}{s^2+\omega^2}\)
\(\text{Therefore, }\)
\(\text{Thus, the Laplace transform of the function is } \frac{6s^2+3s+54}{s^3+9s}\)
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-06
Use the table of Laplace transform and properties to obtain the Laplace transform of the following functions. Specify which transform pair or property is used and write in the simplest form.
a) \(x(t)=\cos(3t)\)
b)\(y(t)=t \cos(3t)\)
c) \(z(t)=e^{-2t}\left[t \cos (3t)\right]\)
d) \(x(t)=3 \cos(2t)+5 \sin(8t)\)
e) \(y(t)=t^3+3t^2\)
f) \(z(t)=t^4e^{-2t}\)
asked 2020-12-25

which of the laplace transform is
\(1.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}+\frac{1}{s-3}\)
\(2.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}-\frac{1}{s-3}\)
\(3.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}+\frac{1}{s+3}\)
\(4.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}-\frac{1}{s+3}\)

asked 2021-05-16
Find the Laplace transform of the function \(L\left\{f^{(9)}(t)\right\}\)
asked 2021-05-01
Use Theorem 7.4.3 to find the Laplace transform F(s) of the given periodic function.
asked 2020-11-22

Find the Laplace transform of the given function
\(\begin{cases}t & 0,4\leq t<\infty \\0 & 4\leq t<\infty \end{cases}\)
\(L\left\{f(t)\right\} - ?\)

asked 2020-12-27

Let f(t) be a function on \(\displaystyle{\left[{0},\infty\right)}\). The Laplace transform of fis the function F defined by the integral \(\displaystyle{F}{\left({s}\right)}={\int_{{0}}^{\infty}}{e}^{{-{s}{t}}} f{{\left({t}\right)}}{\left.{d}{t}\right.}\) . Use this definition to determine the Laplace transform of the following function.
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}-{t}&{0}<{t}<{1}\\{0}&{1}<{t}\end{matrix}\right.}\)

asked 2020-10-26

Given \(f(t)=-\frac{1}{2t}+8 , 0\leq t<4 , f(t+4)=f(t)\)
Find \(F(s)=L\left\{f(t)\right\}\) of the Periodic Function

asked 2020-12-29
Find the laplace transform of the following:
Change of Scale
\(\text{If } L\left\{f(t)\right\}=\frac{s^2-s+1}{(2s+1)^2(s-2)} \text{ , find } L\left\{f(2t)\right\}\)
asked 2021-02-08
Use the Laplace transform table and the linearity of the Laplace transform to determine the following transform.
asked 2020-11-02
Find the Laplace transform \(L\left\{u_3(t)(t^2-5t+6)\right\}\)
\(a) F(s)=e^{-3s}\left(\frac{2}{s^4}-\frac{5}{s^3}+\frac{6}{s^2}\right)\)
\(b) F(s)=e^{-3s}\left(\frac{2}{s^3}-\frac{5}{s^2}+\frac{6}{s}\right)\)
\(c) F(s)=e^{-3s}\frac{2+s}{s^4}\)
\(d) F(s)=e^{-3s}\frac{2+s}{s^3}\)
\(e) F(s)=e^{-3s}\frac{2-11s+30s^2}{s^3}\)