Evaluate the integrals \int_0^{\pi/4}[\sec t i+\tan^2 t j-t\sin t k]dt

babeeb0oL 2021-10-24 Answered
Evaluate the integrals
\(\displaystyle{\int_{{0}}^{{\frac{\pi}{{4}}}}}{\left[{\sec{{t}}}{i}+{{\tan}^{{2}}{t}}{j}-{t}{\sin{{t}}}{k}\right]}{\left.{d}{t}\right.}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Khribechy
Answered 2021-10-25 Author has 13665 answers
To find the integral \(\displaystyle{\int_{{0}}^{{\frac{\pi}{{4}}}}}{\left[{\sec{{t}}}{i}+{{\tan}^{{2}}{t}}{j}-{t}{\sin{{t}}}{k}\right]}{\left.{d}{t}\right.}\)
Explanation:
\(\displaystyle{\int_{{0}}^{{\frac{\pi}{{4}}}}}{\left[{\sec{{t}}}{i}+{{\tan}^{{2}}{t}}{j}-{t}{\sin{{t}}}{k}\right]}{\left.{d}{t}\right.}={\left[{\int_{{0}}^{{\frac{\pi}{{4}}}}}{\sec{{t}}}{\left.{d}{t}\right.}\right]}{i}+{\left[{\int_{{0}}^{{\frac{\pi}{{4}}}}}{{\tan}^{{2}}{t}}{\left.{d}{t}\right.}\right]}{j}-{\left[{\int_{{0}}^{{\frac{\pi}{{4}}}}}{t}{\sin{{t}}}{\left.{d}{t}\right.}\right]}{k}\)
\(\displaystyle={I}_{{1}}{i}+{I}_{{2}}{j}-{I}_{{3}}{k}\)
Where \(\displaystyle{I}_{{1}}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{\sec{{t}}}{\left.{d}{t}\right.},{I}_{{2}}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}},{I}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{\sin{{t}}}{\left.{d}{t}\right.}\)
\(\displaystyle{I}_{{1}}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{\sec{{t}}}{\left.{d}{t}\right.}\)
On integrating
\(\displaystyle={{\left[{\ln}{\left|{\sec{{t}}}+{\tan{{t}}}\right|}\right]}_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}\)
\(\displaystyle={\left[{\ln}{\left|{\sec{{\left({\frac{{\pi}}{{{4}}}}\right)}}}+{\tan{{\left({\frac{{\pi}}{{{4}}}}\right)}}}\right|}-{\ln}{\left|{\sec{{\left({0}\right)}}}+{\tan{{\left({0}\right)}}}\right|}\right]}\)
\(\displaystyle={\left[{\ln}{\left|\sqrt{{{2}}}+{1}\right|}-{\ln}{\left|{1}\right|}\right]}\)
\(\displaystyle={\left[{\ln}{\left|\sqrt{{{2}}}+{1}\right|}\right]}\)
\(\displaystyle{I}_{{2}}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{{\tan}^{{2}}{t}}{\left.{d}{t}\right.}\)
\(\displaystyle={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{\left({{\sec}^{{2}}{t}}-{1}\right)}{\left.{d}{t}\right.}\)
\(\displaystyle={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{{\sec}^{{2}}{t}}{\left.{d}{t}\right.}-{\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{\left.{d}{t}\right.}\)
\(\displaystyle={\left[{1}-{0}\right]}-{\left[{\frac{{\pi}}{{{4}}}}\right]}\)
\(\displaystyle={1}-{\frac{{\pi}}{{{4}}}}\)
\(\displaystyle{I}_{{3}}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{t}{\sin{{t}}}{\left.{d}{t}\right.}\)
Aplying integration by parts
Recall the formula for integration by parts
\(\displaystyle\int{u}\cdot{v}{\left.{d}{x}\right.}={u}\int{v}{\left.{d}{x}\right.}-\int{\left[{\frac{{{d}{u}}}{{{\left.{d}{x}\right.}}}}\int{v}{\left.{d}{x}\right.}\right]}{\left.{d}{x}\right.}\)
Let \(\displaystyle{u}={t},{v}={\sin{{t}}}\) and dx=dt
Therefore,
\(\displaystyle\int{t}{\sin{{t}}}{\left.{d}{t}\right.}={t}\int{\sin{{t}}}{\left.{d}{t}\right.}-\int{\left[{\frac{{{d}}}{{{\left.{d}{t}\right.}}}}{\left({t}\right)}\int{\sin{{t}}}{\left.{d}{t}\right.}\right]}{\left.{d}{t}\right.}\)
\(\displaystyle={t}{\left(-{\cos{{t}}}\right)}-\int{\left[{1}\cdot{\left(-{\cos{{t}}}\right)}\right]}{\left.{d}{t}\right.}\)
\(\displaystyle={t}{\left(-{\cos{{t}}}\right)}+\int{\cos{{t}}}{\left.{d}{t}\right.}\)
\(\displaystyle=-{t}{\cos{{t}}}+{\sin{{t}}}\)
\(\displaystyle\therefore{I}_{{3}}={\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{t}{\sin{{t}}}{\left.{d}{t}\right.}={{\left[-{t}{\cos{{t}}}+{\sin{{t}}}\right]}_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}\)
\(\displaystyle={\left[-{\frac{{\pi}}{{{4}}}}{\left({\frac{{{1}}}{{\sqrt{{{2}}}}}}\right)}+{\frac{{{1}}}{{\sqrt{{{2}}}}}}-{0}\right]}\)
\(\displaystyle={\frac{{{4}-\pi}}{{{4}\sqrt{{{2}}}}}}\)
Substituting \(\displaystyle{I}_{{1}},{I}_{{2}},{I}_{{3}}\) value in equation (1), we get
\(\displaystyle{\int_{{0}}^{{{\frac{{\pi}}{{{4}}}}}}}{\left({\sec{{i}}}+{{\tan}^{{2}}{t}}{j}-{t}{\sin{{t}}}{k}\right)}{\left.{d}{t}\right.}={\ln}{\left|\sqrt{{{2}}}+{1}\right|}{i}+{\left[{1}-{\frac{{\pi}}{{{4}}}}\right]}{j}-{\left[{\frac{{{4}-\pi}}{{{4}\sqrt{{{2}}}}}}\right]}{k}\)
Answer: \(\displaystyle{\int_{{0}}^{{\frac{\pi}{{4}}}}}{\left[{\sec{{t}}}{i}+{{\tan}^{{2}}{t}}{j}-{t}{\sin{{t}}}{k}\right]}{\left.{d}{t}\right.}={\ln}{\left|\sqrt{{{2}}}+{1}\right|}{i}+{\left[{1}-{\frac{{\pi}}{{{4}}}}\right]}{j}-{\left[{\frac{{{4}-\pi}}{{{4}\sqrt{{{2}}}}}}\right]}{k}\)
Not exactly what you’re looking for?
Ask My Question
0
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-10-12
Evaluate the integrals
\(\displaystyle{\int_{{0}}^{{\frac{\pi}{{4}}}}}{\frac{{{{\sec}^{{2}}{x}}}}{{{\left({1}+{7}{\tan{{x}}}\right)}^{{\frac{{2}}{{3}}}}}}}\)
asked 2021-09-02
\(\displaystyle{r}{\left({t}\right)}={\left({\sin{{t}}}\right)}{i}+{\left({1}+{\cos{{t}}}\right)}{j}+{\left({4}{t}\right)}^{{{2}}}{k}\) vector -valued fuction defined in the from is given.
\(\displaystyle{\int_{{0}}^{{\frac{{\pi}}{{{2}}}}}}{r}{\left({t}\right)}{\left.{d}{t}\right.}\) calculate its integral
asked 2022-01-01
I want to solve these Integrals
1. \(\displaystyle{\int_{{0}}^{{{\frac{{\pi}}{{{2}}}}}}}{\frac{{{1}}}{{{1}+{{\tan}^{{\sqrt{{{2}}}}}{x}}}}}{\left.{d}{x}\right.}\)
2. \(\displaystyle{\int_{{0}}^{{{\frac{{\pi}}{{{2}}}}}}}{\frac{{{1}}}{{{\left(\sqrt{{{2}}}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}\right)}^{{2}}}}}\)
asked 2021-10-11
Find the integrals
\(\displaystyle\int{\sec{{t}}}{\left({\sec{{t}}}+{\tan{{t}}}\right)}{\left.{d}{t}\right.}\)
asked 2022-01-01
I need help calculating two integrals
1) \(\displaystyle{\int_{{1}}^{{2}}}\sqrt{{{4}+{\frac{{{1}}}{{{x}}}}}}{\left.{d}{x}\right.}\)
2) \(\displaystyle{\int_{{0}}^{{{\frac{{{2}}}{{\pi}}}}}}{x}^{{n}}{\sin{{\left({x}\right)}}}{\left.{d}{x}\right.}\)
asked 2021-10-14
Evaluate the integrals
\(\displaystyle{\int_{{-\frac{\pi}{{3}}}}^{{0}}}{\sec{{x}}}{\tan{{x}}}{\left.{d}{x}\right.}\)
asked 2021-10-08
Evaluate the following integrals.
\(\displaystyle{\int_{{0}}^{{{\frac{{\pi}}{{{2}}}}}}}{{\sin}^{{7}}{x}}{\left.{d}{x}\right.}\)
...