Evaluate the integrals

$\int}_{\sqrt{3}}^{3}\frac{dt}{3+{t}^{2}$

Dillard
2021-10-20
Answered

Evaluate the integrals

$\int}_{\sqrt{3}}^{3}\frac{dt}{3+{t}^{2}$

You can still ask an expert for help

Alannej

Answered 2021-10-21
Author has **104** answers

We have to evaluate the integral

$\int}_{\sqrt{3}}^{3}\frac{dt}{3+{t}^{2}$

We know

$\int \frac{dx}{{x}^{2}+{a}^{2}}=\frac{1}{a}{\mathrm{tan}}^{-1}\left(\frac{x}{a}\right)$

Therefore,

$\int \frac{dx}{{x}^{2}+{a}^{2}}=\frac{1}{a}{\mathrm{tan}}^{-1}\left(\frac{x}{a}\right)$

Therefore,

$\int}_{\sqrt{3}}^{3}={\int}_{\sqrt{3}}^{3}\frac{dt}{{t}^{2}+{\left(\sqrt{3}\right)}^{2}$

$=[\frac{1}{\sqrt{3}}{\mathrm{tan}}^{-1}{\left(\frac{t}{\sqrt{3}}\right]}_{\sqrt{3}}^{3}$

$=[\frac{1}{\sqrt{3}}\frac{\pi}{3}-\frac{1}{\sqrt{3}}{\mathrm{tan}}^{-1}\left(1\right)]$

$=[\frac{1}{\sqrt{3}}(\frac{\pi}{3}-\frac{\pi}{4}]$

$=\frac{1}{\sqrt{3}}\frac{\pi}{12}$

$=\frac{\pi}{12\sqrt{3}}$

$=\frac{\sqrt{3}\pi}{36}$

We know

Therefore,

Therefore,

asked 2021-05-11

Evaluate the line integral, where C is the given curve

C xy ds

C:$x={t}^{2},y=2t,0\le t\le 5$

C xy ds

C:

asked 2021-02-24

asked 2021-11-19

Find the area enclosed by the curve $x={t}^{2}-2t,y=\sqrt{t}$ and the y-axis

asked 2020-12-25

Set Equality

Lets set A,B,C and D be defined as follows

A={$ninZ|n=2p$ , for some integers p}

B={$minZ|m=2q-1$ ,for some integers q}

c={$kinZ|k=4r$ ,for some integers r}

is A=B

IS A=C

Lets set A,B,C and D be defined as follows

A={

B={

c={

is A=B

IS A=C

asked 2021-12-12

How do you find the integration of $\mathrm{log}x$

asked 2021-10-26

Evaluate the integrals

$\int \frac{1}{x}{(1+7\mathrm{ln}x)}^{-\frac{1}{3}}dx$

asked 2021-10-11

Evaluate the integrals:

$\int x{e}^{{x}^{2}}dx$