Use integration by parts to find the Laplace transform of the given function f(t)=4tcos h(at)

Question
Laplace transform
asked 2020-10-31
Use integration by parts to find the Laplace transform of the given function
\(f(t)=4t\cos h(at)\)

Answers (1)

2020-11-01
Step 1
Given function is
\(f(t)=4t\cos h(at)\)
We have to find Laplace transformation by integration by part.
Step 2
So Laplace Transformation is
\(Lf(t)=4\int_0^\infty t\cos h(at)e^{-st}dt\)
\(\Rightarrow\ Lf(t)=4\int_0^\infty t\bigg(\frac{e^{at}+e^{-at}}{2}\bigg)e^{-st}dt\)
\(\Rightarrow\ Lf(t)=2\int_0^\infty t(e^{(a-s)t}+e^{-(a+s)t})dt\)
\(\Rightarrow\ Lf(t)=2\int_0^\infty te^{(a-s)t}dt+2\int_0^\infty te^{-(a+s)t}dt\)
\(\Rightarrow\ Lf(t)=2\left[-\frac{te^{(a-s)t}}{s-a}-\frac{e^{(a-s)t}}{(s-a)^{2}}\right]_0^\infty+2\left[-\frac{te^{-(a+s)t}}{s+a}-\frac{e^{-(a+s)t}}{(s+a)^{2}}\right]_0^\infty\)
\(\Rightarrow\ Lf(t)=-2\left[0-\frac{1}{(s-a)^{2}}\right]-2\left[0-\frac{1}{(s+a)^{2}}\right]\)
\(\Rightarrow\ Lf(t)=\frac{2}{(s-a)^{2}}+\frac{2}{(s+a)^{2}}\)
\(\Rightarrow\ Lf(t)=\frac{2(2s^{2}+2a^{2}+2as-2as)}{(s-a)^{2}(s+a)^{2}}\)
\(\Rightarrow\ Lf(t)=\frac{4(s^{2}+a^{2})}{(s^{2}-a^{2})^{2}}\)
0

Relevant Questions

asked 2021-03-02
\(\text{Laplace transforms A powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function f(t), the Laplace transform is a new function F(s) defined by }\)
\(F(s)=\int_0^\infty e^{-st} f(t)dt
\(\text{where we assume s is a positive real number. For example, to find the Laplace transform of } f(t)=e^{-t} \text{ , the following improper integral is evaluated using integration by parts:}
\(F(s)=\int_0^\infty e^{-st}e^{-t}dt=\int_0^\infty e^{-(s+1)t}dt=\frac{1}{s+1}\)
\(\text{ Verify the following Laplace transforms, where u is a real number. }\)
\(f(t)=t \rightarrow F(s)=\frac{1}{s^2}\)
asked 2020-10-18
Laplace transforms A powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function f(t), the Laplace transform is a new function F(s) defined by
\(F(s)=\int_0^\infty e^{-st}f(t)dt\)
where we assume s is a positive real number. For example, to find the Laplace transform of f(t) = e^{-t}, the following improper integral is evaluated using integration by parts:
\(F(s)=\int_0^\infty e^{-st}e^{-t}dt=\int_0^\infty e^{-(s+1)t}dt=\frac{1}{(s+1)}\)
Verify the following Laplace transforms, where u is a real number.
\(f(t)=1 \rightarrow F(s)=\frac{1}{s}\)
asked 2021-02-21
Find the Laplace transforms of the following time functions.
Solve problem 1(a) and 1 (b) using the Laplace transform definition i.e. integration. For problem 1(c) and 1(d) you can use the Laplace Transform Tables.
a)\(f(t)=1+2t\) b)\(f(t) =\sin \omega t \text{Hint: Use Euler’s relationship, } \sin\omega t = \frac{e^(j\omega t)-e^(-j\omega t)}{2j}\)
c)\(f(t)=\sin(2t)+2\cos(2t)+e^{-t}\sin(2t)\)
asked 2020-12-27
Let f(t) be a function on \(\displaystyle{\left[{0},\infty\right)}\). The Laplace transform of fis the function F defined by the integral \(\displaystyle{F}{\left({s}\right)}={\int_{{0}}^{\infty}}{e}^{{-{s}{t}}} f{{\left({t}\right)}}{\left.{d}{t}\right.}\) . Use this definition to determine the Laplace transform of the following function.
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}-{t}&{0}<{t}<{1}\\{0}&{1}<{t}\end{matrix}\right.}\)
asked 2020-11-29
Find the Laplace Transform of the function
\(f(t) = e^{at}\)
asked 2020-11-08
Given the function \(\begin{cases}e^{-t}& \text{if } 0\leq t<2\\ 0&\text{if } 2\leq t\end{cases}\)
Express f(t) in terms of the shifted unit step function u(t -a)
F(t) - ?
Now find the Laplace transform F(s) of f(t)
F(s) - ?
asked 2020-11-22
Find the Laplace transform of the given function
\(\begin{cases}t & 0,4\leq t<\infty \\0 & 4\leq t<\infty \end{cases}\)
\(L\left\{f(t)\right\} - ?\)
asked 2020-12-25
Let x(t) be the solution of the initial-value problem
(a) Find the Laplace transform F(s) of the forcing f(t).
(b) Find the Laplace transform X(s) of the solution x(t).
\(x"+8x'+20x=f(t)\)
\(x(0)=-3\)
\(x'(0)=5\)
\(\text{where the forcing } f(t) \text{ is given by }\)
\(f(t) = \begin{cases} t^2 & \quad \text{for } 0\leq t<2 ,\\ 4e^{2-t} & \quad \text{for } 2\leq t < \infty . \end{cases}\)
asked 2021-01-13
Find the inverse Laplace transform of the given function by using the convolution theorem. \({F}{\left({s}\right)}=\frac{s}{{{\left({s}+{1}\right)}{\left({s}^{2}+{4}\right)}}}\)
asked 2021-01-05
Use Theorem 7.4.2 to evaluate the given Laplace transform. Do not evaluate the convolution integral before transforming.(Write your answer as a function of s.)
\({L}{\left\lbrace{e}^{{-{t}}}\cdot{e}^{t} \cos{{\left({t}\right)}}\right\rbrace}\)
...