Use the rules for derivatives to find the derivative of each function defined as

Chesley 2021-10-12 Answered
Use the rules for derivatives to find the derivative of each function defined as follows.
\(\displaystyle{y}={x}\sqrt{{{x}}}+{\frac{{{3}}}{{{x}^{{{2}}}\sqrt{{{x}}}}}}\)

Want to know more about Derivatives?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

sweererlirumeX
Answered 2021-10-13 Author has 21534 answers
Step 1
To find the derivative of: \(\displaystyle{y}={x}\sqrt{{{x}}}+{\frac{{{3}}}{{{x}^{{{2}}}\sqrt{{{x}}}}}}\)
solution:
\(\displaystyle{y}={x}\sqrt{{{x}}}+{\frac{{{3}}}{{{x}^{{{2}}}\sqrt{{{x}}}}}}\)
On simplifying further, we get:
\(\displaystyle{y}={x}\sqrt{{{x}}}+{\frac{{{3}}}{{{x}^{{{2}}}\sqrt{{{x}}}}}}\)
\(\displaystyle{y}={x}^{{{\frac{{{3}}}{{{2}}}}}}+{\frac{{{3}}}{{{x}^{{{\frac{{{5}}}{{{2}}}}}}}}}\) (using, \(\displaystyle{a}^{{{b}}}{a}^{{{c}}}={a}^{{{b}+{c}}}\))
\(\displaystyle{y}={x}^{{{\frac{{{3}}}{{{2}}}}}}+{3}{x}^{{{\frac{{-{5}}}{{{2}}}}}}\) (using, \(\displaystyle{\frac{{{1}}}{{{a}^{{{n}}}}}}={a}^{{-{n}}}\))
differentiating both sides w.r.t x we get:
\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({y}\right)}={\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({x}^{{{\frac{{{3}}}{{{2}}}}}}+{3}{x}^{{{\frac{{-{5}}}{{{2}}}}}}\right)}\)
\(\displaystyle\Rightarrow{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\left({\frac{{{3}}}{{{2}}}}{x}^{{{\frac{{{3}}}{{{2}}}}-{1}}}\right)}+{3}{\left(-{\frac{{{5}}}{{{2}}}}{x}^{{{\frac{{-{5}}}{{{2}}}}-{1}}}\right)}\) (using, \(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({x}^{{{n}}}\right)}={n}{x}^{{{n}-{1}}}\))
\(\displaystyle\Rightarrow{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{3}}}{{{2}}}}\sqrt{{{x}}}-{\frac{{{15}}}{{{2}}}}{x}^{{-{\frac{{{7}}}{{{2}}}}}}\)
\(\displaystyle\Rightarrow{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{3}}}{{{2}}}}\sqrt{{{x}}}-{\frac{{{15}}}{{{2}{x}^{{{3}}}\sqrt{{{x}}}}}}\)
Step 2
Result:
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{3}}}{{{2}}}}\sqrt{{{x}}}-{\frac{{{15}}}{{{2}{x}^{{{3}}}\sqrt{{{x}}}}}}\)
Not exactly what you’re looking for?
Ask My Question
0
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...