 # Find the inverse laplace trans. displaystyle{F}{left({s}right)}=frac{10}{{{s}{left({s}^{2}+{9}right)}}} tricotasu 2021-02-19 Answered
Find the inverse laplace trans.
$F\left(s\right)=\frac{10}{s\left({s}^{2}+9\right)}$
You can still ask an expert for help

## Want to know more about Laplace transform?

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it avortarF
Step 1
Given,
$F\left(s\right)=\frac{10}{s\left({s}^{2}+9\right)}$
Find the inverse Laplace transform of this function.
Step 2
$F\left(s\right)=\frac{10}{s\left({s}^{2}+9\right)}$
$=\frac{10}{9s}-\frac{10s}{9\left({s}^{2}+9\right)}$
Taking inverse Laplace transform of both sides,
${L}^{-1}\left[F\left(s\right)\right]={L}^{-1}\left[\frac{10}{9s}-\frac{10s}{9\left({s}^{2}+9\right)}\right]$
Then, $f\left(t\right)={L}^{-1}\left[\frac{10}{9s}\right]-{L}^{-1}\left[\frac{10s}{9\left({s}^{2}+9\right)}\right]$
$=\frac{10}{9}{L}^{-1}\left[\frac{1}{s}\right]-\frac{10}{9}{L}^{-1}\left[\frac{s}{{s}^{2}+9}\right]$
$=\frac{10}{9}{L}^{-1}\left[\frac{1}{s}\right]-\frac{10}{9}\cdot {L}^{-1}\left[\frac{s}{{s}^{2}+{3}^{2}}\right]$
Step 3
Use the formula such that
${L}^{-1}\left[\frac{1}{s}\right]=t$
${L}^{-1}\left[\frac{s}{{s}^{2}+{a}^{2}}\right]=\mathrm{cos}\left(at\right)$
$f\left(t\right)=\frac{10}{9}\cdot t-\frac{10}{9}\cdot \mathrm{cos}\left(3t\right)$
$=\frac{10}{9}\left[t-\mathrm{cos}\left(3t\right)\right]$
Step 4
Hence,
$f\left(t\right)=\frac{10}{9}\left[t-\mathrm{cos}\left(3t\right)\right]$