# Solve the following IVP using Laplace Transform y′′+3y′+2y=e^(-t), y(0)=0 y′(0)=0

Question
Laplace transform
Solve the following IVP using Laplace Transform
$$y′′+3y′+2y=e^(-t), y(0)=0 y′(0)=0$$

2021-03-10
Step 1
We have to solve given IVP using Laplace transform.
Step 2
We have given
$$y′′+3y′+2y=e^(-t), y(0)=0 y′(0)=0$$
Taking Laplace transform on given differential equation
$$\displaystyle{L}{\left({y}{''}+{3}{y}′+{2}{y}\right)}={L}{\left({e}^{{-{t}}}\right)}$$
$$\displaystyle{L}{\left({y}{''}\right)}+{3}{L}{\left({y}′\right)}+{2}{L}{\left({y}\right)}=\frac{1}{{{s}+{1}}}\ldots{\left({i}\right)}$$
We are using here
$$\displaystyle{L}{\left({y}{''}\right)}={s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}′{\left({0}\right)},{L}{\left({y}′\right)}={s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}\ \text{ and }\ {L}{\left({e}^{{-{t}}}\right)}=\frac{1}{{{s}+{1}}}$$
where $$L(y)=Y(s)$$
Then from equation (i) we get,
$$\displaystyle{s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}′{\left({0}\right)}+{3}{\left({s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}\right)}+{2}{Y}{\left({s}\right)}=\frac{1}{{{s}+{1}}}$$
$$\displaystyle{s}^{2}{Y}{\left({s}\right)}+{3}{s}{Y}{\left({s}\right)}+{2}{Y}{\left({s}\right)}=\frac{1}{{{s}+{1}}}$$
$$\displaystyle{\left({s}^{2}+{3}{s}+{2}\right)}{Y}{\left({s}\right)}=\frac{1}{{{s}+{1}}}$$
$$\displaystyle{\left({s}{\left({s}+{1}\right)}+{2}{\left({s}+{1}\right)}\right)}{Y}{\left({s}\right)}=\frac{1}{{{s}+{1}}}$$
$$\displaystyle{\left({s}+{1}\right)}{\left({s}+{2}\right)}=\frac{1}{{{s}+{1}}}$$
$$\displaystyle{Y}{\left({s}\right)}=\frac{1}{{{\left({s}+{1}\right)}^{2}{\left({s}+{2}\right)}}}\ldots{\left({i}{i}\right)}$$
Now
$$\displaystyle\frac{1}{{{\left({s}+{1}\right)}^{2}{\left({s}+{2}\right)}}}=\frac{A}{{{s}+{1}}}+\frac{B}{{\left({s}+{1}\right)}^{2}}+\frac{C}{{{s}+{2}}}$$
$$\displaystyle\frac{1}{{{\left({s}+{1}\right)}^{2}{\left({s}+{2}\right)}}}=\frac{{{A}{\left({s}+{1}\right)}{\left({s}+{2}\right)}+{B}{\left({s}+{2}\right)}+{C}{\left({s}+{1}\right)}^{2}}}{{{\left({s}+{1}\right)}^{2}{\left({s}+{2}\right)}}}$$
$$\displaystyle{1}={A}{\left({s}+{1}\right)}{\left({s}+{2}\right)}+{B}{\left({s}+{2}\right)}+{C}{\left({s}+{1}\right)}^{2}$$
Put s=-1 we get
B=1
Put s=-2 we get
C=1
Comparing s^2 coefficent we get
$$A+C=0$$
$$\displaystyle\Rightarrow{A}=-{1}$$
So,
$$\displaystyle\frac{1}{{{\left({s}+{1}\right)}^{2}{\left({s}+{2}\right)}}}=-\frac{1}{{{s}+{1}}}+\frac{1}{{\left({s}+{1}\right)}^{2}}+\frac{1}{{{s}+{2}}}$$
Step 3
Now, from equation (ii)
$$\displaystyle{Y}{\left({s}\right)}=\frac{1}{{{\left({s}+{1}\right)}^{2}{\left({s}+{2}\right)}}}$$
$$\displaystyle\Rightarrow{Y}{\left({s}\right)}=-\frac{1}{{{s}+{1}}}+\frac{1}{{\left({s}+{1}\right)}^{2}}+\frac{1}{{{s}+{2}}}$$
Taking Laplace inverse on both sides we get
$$\displaystyle{L}^{ -{{1}}}{\left({Y}{\left({s}\right)}\right)}={L}^{ -{{1}}}{\left(\frac{{-{1}}}{{{s}+{1}}}\right)}+{L}^{ -{{1}}}{\left(\frac{1}{{\left({s}+{1}\right)}^{2}}\right)}+{L}^{ -{{1}}}{\left(\frac{1}{{{s}+{2}}}\right)}$$
$$\displaystyle\Rightarrow{y}{\left({t}\right)}=-{e}^{{-{t}}}+{t}{e}^{{-{t}}}+{e}^{{-{2}{t}}}$$
This is the solution of differential equation.

### Relevant Questions

Find Y(t) using Laplace transform.
$$\displaystyle{y}{''}+{2}{y}'+{5}{y}={e}^{{-{T}}} \sin{{T}}$$
$$y(0)=0 , y'(0)=1$$

Solve the following IVP using Laplace Transform
$$y'-2y =1-t , y(0)=4$$
Use the Laplace transform to solve the given initial-value problem
$$y′′+2y′+y =\delta(t-4)$$
$$y(0)=0$$
$$y′(0)=0$$
Use Laplace transform to find the solution of the IVP
$$2y'+y=0 , y(0)=-3$$
a) $$f{{\left({t}\right)}}={3}{e}^{{-{2}{t}}}$$
b)$$f{{\left({t}\right)}}={3}{e}^{{\frac{t}{{2}}}}$$
c)$$f{{\left({t}\right)}}={6}{e}^{{{2}{t}}} d) \(f{{\left({t}\right)}}={3}{e}^{{-\frac{t}{{2}}}}$$
Solve the IVP with Laplace Transform:
$$\begin{cases} y"+4y'+4y=(3+t)e^{-2t} \\ y(0)=2 \\ y'(0)=5 \end{cases}$$
Use Laplace transform to solve the following initial-value problem
$$y"+2y'+y=0$$
$$y(0)=1, y'(0)=1$$
a) \displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above
Using Laplace Transform , solve the following differential equation
$${y}\text{}-{4}{y}={e}^{{-{3}{t}}},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={2}$$
a) $$\frac{14}{{20}}{e}^{{{2}{t}}}-\frac{5}{{30}}{e}^{{-{2}{t}}}-\frac{9}{{30}}{e}^{{-{6}{t}}}$$
b) $$\frac{11}{{20}}{e}^{{{2}{t}}}-\frac{51}{{20}}{e}^{{-{2}{t}}}-\frac{4}{{20}}{e}^{{-{3}{t}}}$$
c) $$\frac{14}{{15}}{e}^{{{2}{t}}}-\frac{5}{{10}}{e}^{{-{2}{t}}}-\frac{9}{{20}}{e}^{{-{3}{t}}}$$
d) $$\frac{14}{{20}}{e}^{{{2}{t}}}+\frac{5}{{20}}{e}^{{-{2}{t}}}-\frac{9}{{20}}{e}^{{-{3}{t}}}$$
Find the Laplace transform Y(s), of the solution of the IVP
$$y"+3y'+2y=\cos(2t)$$
$$y(0)=0$$
$$y'(0)=1$$
Do not solve the IVP

The function
$$\begin{cases}t & 0\leq t<1\\ e^t & t\geq1 \end{cases}$$
has the following Laplace transform,
$$L(f(t))=\int_0^1te^{-st}dt+\int_1^\infty e^{-(s+1)t}dt$$
True or False

Solve the differential equation using Laplace transform of
$$y''-3y'+2y=e^{3t}$$
when y(0)=0 and y'(0)=0
...