Question

use the Laplace transform to solve the given initial-value problem.y"+y=f(t)y(0)=0 , y'(0)=1 wheredisplaystyle f{{left({t}right)}}={leftlbracebegin{matrix}{1}&{0}le{t}<frac{pi}{{2}}{0}&{t}gefrac{pi}{{2}}end{matrix}right.}

Post Secondary
ANSWERED
asked 2021-03-04

use the Laplace transform to solve the given initial-value problem.
\(y"+y=f(t)\)
\(y(0)=0 , y'(0)=1\) where
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}&{0}\le{t}<\frac{\pi}{{2}}\\{0}&{t}\ge\frac{\pi}{{2}}\end{matrix}\right.}\)

Expert Answers (1)

2021-03-05

Step 1
Given, the initial value problem
\(y"+y=f(t)\)
\(y(0)=0 , y'(0)=1\) where
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}&{0}\le{t}<\frac{\pi}{{2}}\\{0}&{t}\ge\frac{\pi}{{2}}\end{matrix}\right.}\)
step 2
The Laplace transform of the two derivatives
\(\displaystyle{L}{\left\lbrace{y}'\right\rbrace}={s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}\)
\(\displaystyle{L}{\left\lbrace{y}\text{}\right\rbrace}={s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}'{\left({0}\right)}\)
\(\displaystyle{L}{\left\lbrace{1}\right\rbrace}=\frac{1}{{s}}\)
\(\displaystyle{L}{\left\lbrace{e}^{{{a}{t}}}\right\rbrace}=\frac{1}{{{s}-{a}}}\)
Where y(0) and y’(0) are initial conditions.
Step 3
Now,
when \(\displaystyle{0}\le{t}\le\frac{\pi}{{2}}\)
\(y"+y'=1 , y(0)=0 . y'(0)=1\)
\(\displaystyle{s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}'{\left({0}\right)}+{s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}={1}\)
\(\displaystyle{\left\lbrace{s}^{2}+{s}\right\rbrace}{Y}{\left({s}\right)}-{s}\cdot{0}-{1}-{0}={1}\)
\(\displaystyle{\left\lbrace{s}^{2}+{s}\right\rbrace}{Y}{\left({s}\right)}={2}\)
\(\displaystyle{Y}{\left({s}\right)}=\frac{2}{{{s}^{2}+{s}}}=\frac{2}{{{s}{\left({s}+{1}\right)}}}={2}{\left\lbrace\frac{1}{{s}}-\frac{1}{{{s}+{1}}}\right\rbrace}\)
\(\displaystyle{Y}{\left({s}\right)}={2}{\left\lbrace{1}-{e}^{{-{t}}}\right\rbrace}\)
when \(\displaystyle{t}\ge\frac{\pi}{{2}}\)
\(y"+y'=0, y(0)=0 , y'(0)=1\)
\(\displaystyle{s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}'{\left({0}\right)}+{s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}={1}\)
\(\displaystyle{\left\lbrace{s}^{2}+{s}\right\rbrace}{Y}{\left({s}\right)}-{s}\cdot{0}-{1}-{0}={0}\)
\(\displaystyle{\left\lbrace{s}^{2}+{s}\right\rbrace}{Y}{\left({s}\right)}={1}\)
\(\displaystyle{Y}{\left({s}\right)}=\frac{1}{{{s}^{2}+{s}}}=\frac{1}{{{s}{\left({s}+{1}\right)}}}={\left\lbrace\frac{1}{{s}}-\frac{1}{{{s}+{1}}}\right\rbrace}\)
\(\displaystyle{Y}{\left({s}\right)}={\left\lbrace{1}-{e}^{{-{t}}}\right\rbrace}\)
Step 4
Hence the solution is
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{2}{\left\lbrace{1}-{e}^{{-{t}}}\right\rbrace}&{0}\le{t}<\frac{\pi}{{2}}\\{1}-{e}^{{-{t}}}&{t}\ge\frac{\pi}{{2}}\end{matrix}\right.}\)

34
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-09-24

Use Laplace transform to solve the following initial value problem:
\(\displaystyle y''+{5}{y}={1}+{t},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={4}\)
A)\(\displaystyle{\frac{{{7}}}{{{25}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)
B) \(\displaystyle{\frac{{{7}}}{{{2}}}}+{\frac{{{t}}}{{{5}}}}-{\frac{{{t}}}{{{25}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)
C) \(\displaystyle{\frac{{{7}}}{{{25}}}}+{\frac{{{t}}}{{{5}}}}\)
D) \(\displaystyle{\frac{{{7}}}{{{25}}}}+{\frac{{{t}}}{{{5}}}}-{\frac{{{7}}}{{{25}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)
E) non of the above
F) \(\displaystyle{\frac{{{7}}}{{{25}}}}+{\frac{{{t}}}{{{5}}}}-{\frac{{{7}}}{{{5}}}}{e}^{{t}}{\cos{{\left({2}{t}\right)}}}+{\frac{{{21}}}{{{10}}}}{e}^{{t}}{\sin{{\left({2}{t}\right)}}}\)

asked 2021-09-06
Use Laplace transform to solve the initial-value problem
\(\displaystyle{\frac{{{d}^{{2}}{y}}}{{{\left.{d}{t}\right.}^{{2}}}}}+{25}{y}={10}{\cos{{5}}}{t},{y}{\left({0}\right)}={1},{y}'{\left({0}\right)}={0}\)
asked 2021-09-03
Solve equation using Laplace transform
\(\displaystyle\ddot{{{y}}}+{9}{y}=\delta{\left({t}-{\frac{{\pi}}{{{6}}}}\right)}{\sin{{\left({t}\right)}}},{y}{\left({0}\right)}={0},\dot{{{y}}}{\left({0}\right)}={0}\)
asked 2021-08-22
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{t}\right.}}-{y}={z},\ {y}{\left({0}\right)}={0}\)
...