The popularity of fads and fashions often decays exponentially. One example is ticket sales for a popular movie. The table shows the total money spent per weekend on tickets in the United States and Canada for the movie The Da Vinci Code.

$\begin{array}{cc}\text{Weekend in 2006}& \text{Ticket Sales (millions)}\\ \text{May 19\u2014May 21}& \text{77.1}\\ \text{May 26\u2014May 28}& \text{34.0}\\ \text{June 2\u2014June 4}& \text{18.6}\\ \text{June 9\u2014June 11}& \text{10.4}\\ \text{June 16\u2014June 18}& \text{5.3}\\ \text{June 23\u2014June 25}& \text{4.1}\\ \text{June 30\u2014July 2}& \text{2.3}\end{array}$

a) Use a graphing calculator to create a scatter plot of the data.

b) Draw a quadratic curve of best fit. - Press STAT, cursor over to display the CALC menu, and select 5:QuadReg. - Press VARS, and cursor over to display the Y-VARS menu. Select 1:Function and then select 1:Y1. - Press ENTER to get the QuadReg screen, and press GRAPH.

c) Draw an exponential curve of best fit. - Press STAT, cursor over to display the CALC menu, and select 0:ExpReg. - Press VARS, and cursor over to display the Y-VARS menu. Select 1:Function and then select 2:Y2. - Press ENTER to get the ExpReg screen, and press GRAPH.

d) Examine the two curves. Which curve of best fit best models the data?