With the aid of Laplace Transform, solve the Initial Value Problem {y}text{}{left({t}right)}-{y}'{left({t}right)}={e}^{t} cos{{left({t}right)}}+ sin{{left({t}right)}},{y}{left({0}right)}={0},{y}'{left({0}right)}={0}

Question
Laplace transform
asked 2020-12-09
With the aid of Laplace Transform, solve the Initial Value Problem
\({y}\text{}{\left({t}\right)}-{y}'{\left({t}\right)}={e}^{t} \cos{{\left({t}\right)}}+ \sin{{\left({t}\right)}},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={0}\)

Answers (1)

2020-12-10
Step 1
The Laplace Transform of a second order linear differential equation ,
\(y"+ay'+by=f(t) \text{ with } y(0)=A \text{ and } y'(0)=B\)
is given by,
\({Y}{\left({s}\right)}=\frac{{{\left({s}+{a}\right)}{A}+{B}}}{{{s}^{2}+{a}{s}+{b}}}+\frac{{{F}{\left({s}\right)}}}{{{s}^{2}+{a}{s}+{b}}}\)
Given,
\({y}\text{}{\left({t}\right)}-{y}'{\left({t}\right)}={e}^{t} \cos{{\left({t}\right)}}+ \sin{{\left({t}\right)}},{y}{\left({0}\right)}={0},{y}'{\left({0}\right)}={0}\)
Step 2
Applying Laplace Transform in the overall equation (1),
\({y}\text{}{\left({t}\right)}-{y}'{\left({t}\right)}={e}^{t} \cos{{\left({t}\right)}}+ \sin{{\left({t}\right)}}\)
\(\Rightarrow{L}{\left[{y}\text{}{\left({t}\right)},{s}\right]}-{L}{\left[{y}'{\left({t}\right)},{s}\right]}={L}{\left[{e}^{t} \cos{{\left({t}\right)}},{s}\right]}+{L}{\left[ \sin{{\left({t}\right)}},{s}\right]}\)
\(\Rightarrow{\left[{s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}'{\left({0}\right)}\right]}-{\left[{s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}\right]}={L}{\left[ \cos{{\left({t}\right)}},{s}\right]}_{{s}}\to{s}-{1}+\frac{a}{{{s}^{2}+{1}^{2}}}\)
\(\Rightarrow{s}^{2}{Y}-{s}{Y}{\left({s}\right)}={\left[\frac{s}{{{s}^{2}+{1}}}\right]}_{{s}}\to{s}-{1}+\frac{1}{{{s}^{2}+{1}}}\)
\(\Rightarrow{\left({s}^{2}-{s}\right)}{Y}{\left({s}\right)}={\left[\frac{{{s}-{1}}}{{{\left({s}-{1}\right)}^{2}+{1}}}\right]}+\frac{1}{{{s}^{2}+{1}}}\)
\(\Rightarrow{s}{\left({s}-{1}\right)}{Y}{\left({s}\right)}={\left[\frac{{{s}-{1}}}{{{\left({s}-{1}\right)}^{2}+{1}}}\right]}+\frac{1}{{{s}^{2}+{1}}}\)
\(\Rightarrow{Y}{\left({s}\right)}=\frac{1}{{{s}{\left[{\left({s}-{1}\right)}^{2}+{1}\right]}}}+\frac{1}{{{s}{\left({s}-{1}\right)}{\left({s}^{2}+{1}\right)}}}\)
Step 3
The answer is :\({Y}{\left({s}\right)}=\frac{1}{{{s}{\left[{\left({s}-{1}\right)}^{2}+{1}\right]}}}+\frac{1}{{{s}{\left({s}-{1}\right)}{\left({s}^{2}+{1}\right)}}}\)
0

Relevant Questions

asked 2020-10-23
Solve the initial value problem \(\displaystyle{\left\lbrace\begin{matrix}{y}\text{}+{16}{y}= \cos{{\left({4}{t}\right)}}\\{y}{\left({0}\right)}={1}\\{y}'{\left({0}\right)}={1}\end{matrix}\right.}\) using the Laplace transform.
asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2020-11-16
Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below.
\(y"+y=g(t) , y(0)=-4 , y'(0)=0\)
where \(g{{\left({t}\right)}}={\left\lbrace\begin{matrix}{t}&{t}<{4}\\{5}&{t}>{4}\end{matrix}\right.}\)
Y(s)-?
asked 2020-11-02
\(y''+y=e^{-2t}\sin t , y(0)=y′(0)=0\)
solution of given initial value problem with Laplace transform
asked 2021-03-04
use the Laplace transform to solve the given initial-value problem.
\(y"+y=f(t)\)
\(y(0)=0 , y'(0)=1\) where
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}&{0}\le{t}<\frac{\pi}{{2}}\\{0}&{t}\ge\frac{\pi}{{2}}\end{matrix}\right.}\)
asked 2020-12-06
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}+{8}{y}'+{41}{y}=\delta{\left({t}-\pi\right)}+\delta{\left({t}-{3}\pi\right)},\ \ \ \ {y}{\left({0}\right)}={1},\ \ \ \ {y}'{\left({0}\right)}={0}\ \ {y}{\left({t}\right)}=?\)
asked 2021-03-06
Find the solution of the initial value problem given below by Laplace transform
\(y'-y=t e^t \sin t\)
\(y(0)=0\)
asked 2021-02-08
Use the Laplace transform to solve the following initial value problem:
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
a)take Laplace transform of both sides of the given differntial equation to create corresponding algebraic equation and then solve for \(L\left\{y(t)\right\}\) b) Express the solution \(y(t)\) in terms of a convolution integral
asked 2021-02-19
Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above
asked 2020-10-28
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}-{6}{y}'+{13}{y}={0},\ \ \ {y}{\left({0}\right)}={0},\ \ \ {y}'{\left({0}\right)}=-{9}\)
...