Use the Laplace transform to solve the given initial-value problem {y}{''}+{2}{y}'+{y}={0},{y}{left({0}right)}={1},{y}'{left({0}right)}={1}

Use the Laplace transform to solve the given initial-value problem {y}{''}+{2}{y}'+{y}={0},{y}{left({0}right)}={1},{y}'{left({0}right)}={1}

Question
Laplace transform
asked 2020-10-31
Use the Laplace transform to solve the given initial-value problem
\({y}{''}+{2}{y}'+{y}={0},{y}{\left({0}\right)}={1},{y}'{\left({0}\right)}={1}\)

Answers (1)

2020-11-01
Step 1
It is given that the initial value problem is \({y}{''}+{2}{y}'+{y}={0},{y}{\left({0}\right)}={1},{y}'{\left({0}\right)}={1}\)
Step 2
Take Laplace transformation as,
\({L}{\left\lbrace{y}\text{}\right\rbrace}+{2}{L}{\left\lbrace{y}'\right\rbrace}+{L}{\left\lbrace{y}\right\rbrace}={L}{\left\lbrace{0}\right\rbrace}\)
\({s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}'{\left({0}\right)}+{2}{\left[{s}{Y}{\left({s}\right)}-{y}{\left({0}\right)}\right]}+{Y}{\left({s}\right)}={0}\)
\({s}^{2}{Y}{\left({s}\right)}-{s}{y}{\left({0}\right)}-{y}'{\left({0}\right)}+{2}{s}{Y}{\left({s}\right)}-{2}{y}{\left({0}\right)}+{Y}{\left({s}\right)}={0}\)
\({s}^{2}{Y}{\left({s}\right)}-{s}-{1}+{2}{s}{Y}{\left({s}\right)}-{2}+{Y}{\left({s}\right)}={0}\)
\({Y}{\left({s}\right)}{\left({s}^{2}+{2}{s}+{1}\right)}-{s}-{3}={0}\)
\({Y}{\left({s}\right)}{\left({s}^{2}+{2}{s}+{1}\right)}={s}+{3}\)
Step 3
On further simplification,
\({Y}{\left({s}\right)}=\frac{{{s}+{3}}}{{\left({s}+{1}\right)}^{2}}\)
\({y}{\left({t}\right)}={L}^{ -{{1}}}{\left\lbrace\frac{{{s}+{3}}}{{\left({s}+{1}\right)}^{2}}\right\rbrace}\)
\({y}{\left({t}\right)}={L}^{ -{{1}}}{\left\lbrace\frac{2}{{\left({s}+{1}\right)}^{2}}+\frac{1}{{{s}+{1}}}\right\rbrace}\ \ \ \ \ \ \ {\left(\text{because }\ \frac{{{s}+{3}}}{{\left({s}+{1}\right)}^{2}}=\frac{2}{{\left({s}+{1}\right)}^{2}}+\frac{1}{{{s}+{1}}}\right)}\)
\({y}{\left({t}\right)}={L}^{ -{{1}}}{\left\lbrace\frac{2}{{\left({s}+{1}\right)}^{2}}\right\rbrace}+{L}^{ -{{1}}}{\left\lbrace\frac{1}{{{s}+{1}}}\right\rbrace}\)
\({y}{\left({t}\right)}=\frac{{{2}{t}}}{{e}^{t}}+{e}^{{-{t}}}\)
\({y}{\left({t}\right)}={e}^{{-{t}}}{\left({2}{t}+{1}\right)}\)
Step 4
The solution of the initial value problem is \({y}{\left({t}\right)}={e}^{{-{t}}}{\left({2}{t}+{1}\right)}\)
0

Relevant Questions

asked 2021-03-04
use the Laplace transform to solve the given initial-value problem.
\(y"+y=f(t)\)
\(y(0)=0 , y'(0)=1\) where
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}&{0}\le{t}<\frac{\pi}{{2}}\\{0}&{t}\ge\frac{\pi}{{2}}\end{matrix}\right.}\)
asked 2020-12-06
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}+{8}{y}'+{41}{y}=\delta{\left({t}-\pi\right)}+\delta{\left({t}-{3}\pi\right)},\ \ \ \ {y}{\left({0}\right)}={1},\ \ \ \ {y}'{\left({0}\right)}={0}\ \ {y}{\left({t}\right)}=?\)
asked 2020-10-28
Use the Laplace transform to solve the given initial-value problem.
\(\displaystyle{y}{''}-{6}{y}'+{13}{y}={0},\ \ \ {y}{\left({0}\right)}={0},\ \ \ {y}'{\left({0}\right)}=-{9}\)
asked 2021-02-08
Use the Laplace transform to solve the following initial value problem:
\(2y"+4y'+17y=3\cos(2t)\)
\(y(0)=y'(0)=0\)
a)take Laplace transform of both sides of the given differntial equation to create corresponding algebraic equation and then solve for \(L\left\{y(t)\right\}\) b) Express the solution \(y(t)\) in terms of a convolution integral
asked 2020-10-23
Solve the initial value problem \(\displaystyle{\left\lbrace\begin{matrix}{y}\text{}+{16}{y}= \cos{{\left({4}{t}\right)}}\\{y}{\left({0}\right)}={1}\\{y}'{\left({0}\right)}={1}\end{matrix}\right.}\) using the Laplace transform.
asked 2021-02-09
In an integro-differential equation, the unknown dependent variable y appears within an integral, and its derivative \(\frac{dy}{dt}\) also appears. Consider the following initial value problem, defined for t > 0:
\(\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}+{4}{\int_{{0}}^{{t}}}{y}{\left({t}-{w}\right)}{e}^{{-{4}{w}}}{d}{w}={3},{y}{\left({0}\right)}={0}\)
a) Use convolution and Laplace transforms to find the Laplace transform of the solution.
\({Y}{\left({s}\right)}={L}{\left\lbrace{y}{\left({t}\right)}\right)}{\rbrace}-?\)
b) Obtain the solution y(t).
y(t) - ?
asked 2020-11-16
Solve for Y(s), the Laplace transform of the solution y(t) to the initial value problem below.
\(y"+y=g(t) , y(0)=-4 , y'(0)=0\)
where \(g{{\left({t}\right)}}={\left\lbrace\begin{matrix}{t}&{t}<{4}\\{5}&{t}>{4}\end{matrix}\right.}\)
Y(s)-?
asked 2020-12-17
use the Laplace transform to solve the given initial-value problem. \(y"+y'-2y=10e^{-t}, y(0)=0,y'(0)=1\)
asked 2020-11-10
use the Laplace transform to solve the given initial-value problem.
\(y"-3y'+2y=4 \ , \ y(0)=0 \ , \ y'(0)=1\)
asked 2021-01-08
use the Laplace transform to solve the given initial-value problem
\(y''+5y'+4y=0\)
\(y(0)=1\)
\(y'(0)=0\)
...