2 \frac{1}{7} \cdot 3 \frac{2}{3}= Please step by step and discuss rul

he298c 2021-10-01 Answered
\(\displaystyle{2}{\frac{{{1}}}{{{7}}}}\cdot{3}{\frac{{{2}}}{{{3}}}}=\)
Please step by step and discuss rules in multiplying with whole numbers & fractions.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Jaylen Fountain
Answered 2021-10-02 Author has 7759 answers
Step 1
\(\displaystyle{2}+{\frac{{{1}}}{{{7}}}}\) can be written as, \(\displaystyle{\frac{{{2}\times{7}+{1}}}{{{7}}}}={\frac{{{14}+{1}}}{{{7}}}}={\frac{{{15}}}{{{7}}}}\)

\(\displaystyle{3}+{\frac{{{2}}}{{{3}}}}\) can be written as, \(\displaystyle{\frac{{{3}\times{3}+{2}}}{{{3}}}}={\frac{{{11}}}{{{3}}}}\)
Step 2
So, adding them, we get,
\(\displaystyle{\frac{{{15}}}{{{7}}}}+{\frac{{{11}}}{{{3}}}}\)
\(\displaystyle{\frac{{{15}\times{3}+{11}\times{7}}}{{{7}\times{3}}}}\)
\(\displaystyle={\frac{{{45}+{77}}}{{{21}}}}\)
\(\displaystyle={\frac{{{122}}}{{{21}}}}\)
\(\displaystyle={5}+{\frac{{{17}}}{{{21}}}}\)
Have a similar question?
Ask An Expert
49
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-11-16
Evaluate \(\displaystyle{\left({\frac{{{2}}}{{{3}}}}\right)}+{\left[{\left({\frac{{{4}}}{{{5}}}}\right)}\cdot{\left({\frac{{{1}}}{{{6}}}}\right)}\right]}\)
asked 2021-09-16
Evaluate the expression
\(\displaystyle{\frac{{{1}}}{{{2}}}}\cdot{\frac{{{2}}}{{{3}}}}\div{\frac{{{3}}}{{{2}}}}-{\frac{{{1}}}{{{12}}}}\cdot{\left(-{\frac{{{1}}}{{{3}}}}\right)}\)
A. \(\displaystyle{\frac{{{1}}}{{{2}}}}\cdot{\frac{{{2}}}{{{3}}}}\div{\frac{{{3}}}{{{2}}}}-{\frac{{{1}}}{{{12}}}}\cdot{\left(-{\frac{{{1}}}{{{3}}}}\right)}=?\)
B. The answeris undefined.
asked 2021-10-10
Which step has the error? Describe what the error is
\(\displaystyle{\frac{{{5}{r}^{{{2}}}}}{{{2}{r}+{3}}}}\div{\frac{{{4}{r}+{6}}}{{{10}}}}\)
Step 1: \(\displaystyle{\frac{{{5}{r}^{{{2}}}}}{{{2}{r}+{3}}}}\times{\frac{{{2}{\left({2}{r}+{3}\right)}}}{{{10}}}}\)
Step 2: \(\displaystyle{\frac{{{5}{r}^{{{2}}}}}{{{1}}}}\times{\frac{{{2}}}{{{10}}}}={\frac{{{10}{r}^{{{2}}}}}{{{10}}}}\)
Step 3: \(\displaystyle{\frac{{{10}{r}^{{{2}}}}}{{{10}}}}={r}^{{{2}}}\)
asked 2021-10-18
simplify each numerical expression. \(\displaystyle-{\frac{{{4}}}{{{5}}}}-{\frac{{{1}}}{{{2}}}}\cdot{\left(-{\frac{{{3}}}{{{5}}}}\right)}\)
asked 2021-11-13
Evaluate \(\displaystyle{\left({\frac{{{21}}}{{{25}}}}\right)}\cdot{\left({\frac{{{100}}}{{{3}}}}\right)}\)
asked 2021-11-16

\(\displaystyle{\frac{{-{7}}}{{{5}}}}\ \text{divided by}\ {\left({\frac{{{1}}}{{{2}}}}-{\left(-{\frac{{{1}}}{{{4}}}}\right)}\right)}\)

asked 2021-09-22
Discuss: Recognizing Partial Fraction Decompositions
For each expression, determine whether it is already a partial fraction decomposition or whether it can be decomposed further.
a) \(\displaystyle{\frac{{{x}}}{{{x}^{{{2}}}+{1}}}}+{\frac{{{1}}}{{{x}+{1}}}}\)
b) \(\displaystyle{\frac{{{x}}}{{{\left({x}+{1}\right)}^{{{2}}}}}}\)
c) \(\displaystyle{\frac{{{1}}}{{{x}+{1}}}}+{\frac{{{2}}}{{{\left({x}+{1}\right)}^{{{2}}}}}}\)
...