Question

Given the function begin{cases}e^{-t}& text{if } 0leq t<2 0&text{if } 2leq tend{cases}Express f(t) in terms of the shifted unit step function u(t -a)F(t)

First order differential equations
ANSWERED
asked 2020-11-08

Given the function \(\begin{cases}e^{-t}& \text{if } 0\leq t<2\\ 0&\text{if } 2\leq t\end{cases}\)
Express f(t) in terms of the shifted unit step function u(t -a)
F(t) - ?
Now find the Laplace transform F(s) of f(t)
F(s) - ?

Answers (1)

2020-11-09

Step 1
Since f(t)=0 for \(2\leq t \text{ and } t<0\) so create step function: \(u(t)-u(t-2)\) which will give those zero values.
Thus, \(f(t)=e^{-t}[u(t)-u(t-2)] \text{ or } f(t)=e^{-t}u(t)-e^{-t}u(t-2)\)
Step 2
Calculate Laplace transform:
\(F(s)=\int_{-\infty}^\infty f(t)e^{-st}dt\)
\(=\int_{-\infty}^\infty(e^{-t}u(t)-e^{-t}u(t-2))e^{-st}dt\)
\(=\int_{-\infty}^\infty(e^{-t}u(t))e^{-st}dt - \int_{-\infty}^\infty(e^{-t}u(t-2))e^{-st}dt\)
\(=\int_0^\infty e^{-(s+1)t}dt - \int_2^\infty e^{-(s+1)t}dt\)
\(=\frac{1}{(s+1)}- \frac{e^{-2(s+1)}}{(s+1)}\)
\(=\frac{1-e^{-2(s+1)}}{(s+1)}\)
Step 3
Thus, Laplace transform is \(F(s)=\frac{1-e^{-2(s+1)}}{(s+1)}\)

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-01-13

The function
\(\begin{cases}t & 0\leq t<1\\ e^t & t\geq1 \end{cases}\)
has the following Laplace transform,
\(L(f(t))=\int_0^1te^{-st}dt+\int_1^\infty e^{-(s+1)t}dt\)
True or False

asked 2020-11-22

Find the Laplace transform of the given function
\(\begin{cases}t & 0,4\leq t<\infty \\0 & 4\leq t<\infty \end{cases}\)
\(L\left\{f(t)\right\} - ?\)

asked 2021-01-24

\(g(t)=\begin{cases}0 & 0<t<11 & 1<t<36&3<t<54&5<t\end{cases}\) &

 \(g(t)=\prod_{1,3}(t)+6\prod_{3,5}(t)+4u(t-5)\)
compute the Laplace transform of g(t)

asked 2020-10-26

DIFFERENTIAL EQUATION
Given \(f(t)=-\frac{1}{2t}+8 , 0\leq t<4 , f(t+4)=f(t)\)
Find \(F(s)=L\left\{f(t)\right\}\) of the Periodic Function

asked 2021-03-07

use the Laplace transform to solve the initial value problem.
\(y"-3y'+2y=\begin{cases}0&0\leq t<1\\1&1\leq t<2\\ -1&t\geq2\end{cases}\)
\(y(0)=-3\)
\(y'(0)=1\)

asked 2021-05-17

Explain why the function is discontinuous at the given number a. Sketch the graph of the function. \(f(x) = \left\{\frac{1}{x+2}\right\}\) if \(x \neq -2\) \(a= -2\)
1 if \(x = -2\)

asked 2021-02-21

Use the Laplace transform to solve the heat equation
\(u_t=u_{xx} 0<x<1 \text{ and } t>0\)
\({u}{\left({x},{0}\right)}= \sin{{\left(\pi{x}\right)}}\)
\({u}{\left({0},{t}\right)}={u}{\left({1},{t}\right)}={0}\)

asked 2020-12-27

Let f(t) be a function on \(\displaystyle{\left[{0},\infty\right)}\). The Laplace transform of fis the function F defined by the integral \(\displaystyle{F}{\left({s}\right)}={\int_{{0}}^{\infty}}{e}^{{-{s}{t}}} f{{\left({t}\right)}}{\left.{d}{t}\right.}\) . Use this definition to determine the Laplace transform of the following function.
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}-{t}&{0}<{t}<{1}\\{0}&{1}<{t}\end{matrix}\right.}\)

asked 2020-12-25

\(L\left\{t-e^{-3t}\right\}\)
which of the laplace transform is
\(1.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}+\frac{1}{s-3}\)
\(2.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}-\frac{1}{s-3}\)
\(3.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}+\frac{1}{s+3}\)
\(4.)\ L\left\{t-e^{-3t}\right\}=\frac{1}{s^{2}}-\frac{1}{s+3}\)

asked 2020-11-08

Find the solution of the Differentional equation by using Laplace Transformation
\(2y'-3y=e^{2t}, y(0)=1\)
\(y"+y=t, y(0)=0 \ and \ y'(0)=2\)

...