Need to find and correct error in the function y=-9.5x^{2}-47.5x+63 as shown. x=frac{-b}{2a*x}=frac{-47.5}{2(-9.5)*x}=frac{-47.5}{-19*x}=-(-2.5)x=2.5 y=-9.5(2.5)^{2}-47.5(2.5)+63y=59.375-118.75+63y=-115.125

Need to find and correct error in the function y=-9.5x^{2}-47.5x+63 as shown. x=frac{-b}{2a*x}=frac{-47.5}{2(-9.5)*x}=frac{-47.5}{-19*x}=-(-2.5)x=2.5 y=-9.5(2.5)^{2}-47.5(2.5)+63y=59.375-118.75+63y=-115.125

Question
Functions
asked 2021-01-06
Need to find and correct error in the function \(y=-9.5x^{2}-47.5x+63\) as shown.
\(x=\frac{-b}{2a*x}=\frac{-47.5}{2(-9.5)*x}=\frac{-47.5}{-19*x}=-(-2.5)x=2.5\)
\(y=-9.5(2.5)^{2}-47.5(2.5)+63y=59.375-118.75+63y=-115.125\)

Answers (1)

2021-01-07
Identify the coefficients a,b, and c: \(a=-9.5\), \(b=-47.5\), \(c =63\). substituted \(b = 47.5\) in the formula for finding the vertex.
Let's correct that error and find the correct solution.
\(x=\frac{-b}{2a}\)
\(x=-\frac{47.5}{2*(-9.5)}\)
\(x=-\frac{-47.5}{-19}\)
\(x=-2.5\)
\(y=-9.5*(-2.5)^{2}-47.5*(-2.5)+63\)
\(y=-59.375+118.75+63\)
\(y=122.375\) The vertex is (-2.5, 122.375).
0

Relevant Questions

asked 2021-05-11
Find the absolute maximum value and the absolute minimum value, if any, of the function.
\(f(x)=8x-\frac{9}{x}\)
asked 2021-03-20
The graph of y = f(x) contains the point (0,2), \(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{-{x}}}{{{y}{e}^{{{x}^{{2}}}}}}}\), and f(x) is greater than 0 for all x, then f(x)=
A) \(\displaystyle{3}+{e}^{{-{x}^{{2}}}}\)
B) \(\displaystyle\sqrt{{{3}}}+{e}^{{-{x}}}\)
C) \(\displaystyle{1}+{e}^{{-{x}}}\)
D) \(\displaystyle\sqrt{{{3}+{e}^{{-{x}^{{2}}}}}}\)
E) \(\displaystyle\sqrt{{{3}+{e}^{{{x}^{{2}}}}}}\)
asked 2021-05-19
Consider the function \(f(x)=2x^{3}-6x^{2}-18x+9\) on the interval [-2,4].
What is the absolute minimum of f(x) on [-2,4]?
What is the absolute maximum of f(x) on [-2,4]?
asked 2021-05-09
Find the absolute maximum and minimum values of f on the given interval.
\(f(x)=4x^{3}-6x^{2}-24x+9. [-2,3]\)
asked 2021-04-06
\(\displaystyle{Q}={\int_{{4}}^{{9}}}{\frac{{{3}{x}+{12}}}{{{x}^{{2}}+{6}{x}+{9}}}}{\left.{d}{x}\right.}\)
Determine the numerical values of the coefficients, A and B, where \(\displaystyle{A}\leq{B}\).
\(\displaystyle{\frac{{{A}}}{{{d}{e}{n}{o}{m}{i}{a}{n}{a}\to{r}}}}+{\frac{{{B}}}{{{d}{e}{n}{o}{m}{i}{a}{n}\to{r}}}}\)
Need to find A and B.
asked 2021-06-05
Find the absolute maximum value and the absolute minimum value, if any, of the function.
\(g(x)=-x^{2}+2x+6\)
asked 2021-04-13
A slab of insulating material of uniform thickness d, lying between \(\displaystyle{\frac{{-{d}}}{{{2}}}}\) to \(\displaystyle{\frac{{{d}}}{{{2}}}}\) along the x axis, extends infinitely in the y and z directions, as shown in the figure. The slab has a uniform charge density \(\displaystyle\rho\). The electric field is zero in the middle of the slab, at x=0. Which of the following statements is true of the electric field \(\displaystyle{E}_{{{\vec}}}\) at the surface of one side of the slab?
asked 2021-06-04
Solve the absolute value and find intervals.
\(|\frac{2}{x}-4|<3\)
asked 2021-05-09
Find the absolute maximum and absolute minimum values of f on the given interval.
\(f(x)=x+\frac{4}{x},[0.2,8]\)
asked 2021-05-21
Find the absolute maximum and absolute minimum values of f over the interval. \(f(x)=(\frac{4}{x})+\ln(x^{2}), 1\leq x\leq 4\)
...