Ask question

# Need to find and correct error in the function y=-9.5x^{2}-47.5x+63 as shown. x=frac{-b}{2a*x}=frac{-47.5}{2(-9.5)*x}=frac{-47.5}{-19*x}=-(-2.5)x=2.5 y=-9.5(2.5)^{2}-47.5(2.5)+63y=59.375-118.75+63y=-115.125 # Need to find and correct error in the function y=-9.5x^{2}-47.5x+63 as shown. x=frac{-b}{2a*x}=frac{-47.5}{2(-9.5)*x}=frac{-47.5}{-19*x}=-(-2.5)x=2.5 y=-9.5(2.5)^{2}-47.5(2.5)+63y=59.375-118.75+63y=-115.125

Question
Functions asked 2021-01-06
Need to find and correct error in the function $$y=-9.5x^{2}-47.5x+63$$ as shown.
$$x=\frac{-b}{2a*x}=\frac{-47.5}{2(-9.5)*x}=\frac{-47.5}{-19*x}=-(-2.5)x=2.5$$
$$y=-9.5(2.5)^{2}-47.5(2.5)+63y=59.375-118.75+63y=-115.125$$

## Answers (1) 2021-01-07
Identify the coefficients a,b, and c: $$a=-9.5$$, $$b=-47.5$$, $$c =63$$. substituted $$b = 47.5$$ in the formula for finding the vertex.
Let's correct that error and find the correct solution.
$$x=\frac{-b}{2a}$$
$$x=-\frac{47.5}{2*(-9.5)}$$
$$x=-\frac{-47.5}{-19}$$
$$x=-2.5$$
$$y=-9.5*(-2.5)^{2}-47.5*(-2.5)+63$$
$$y=-59.375+118.75+63$$
$$y=122.375$$ The vertex is (-2.5, 122.375).

### Relevant Questions asked 2021-05-11
Find the absolute maximum value and the absolute minimum value, if any, of the function.
$$f(x)=8x-\frac{9}{x}$$ asked 2021-03-20
The graph of y = f(x) contains the point (0,2), $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{-{x}}}{{{y}{e}^{{{x}^{{2}}}}}}}$$, and f(x) is greater than 0 for all x, then f(x)=
A) $$\displaystyle{3}+{e}^{{-{x}^{{2}}}}$$
B) $$\displaystyle\sqrt{{{3}}}+{e}^{{-{x}}}$$
C) $$\displaystyle{1}+{e}^{{-{x}}}$$
D) $$\displaystyle\sqrt{{{3}+{e}^{{-{x}^{{2}}}}}}$$
E) $$\displaystyle\sqrt{{{3}+{e}^{{{x}^{{2}}}}}}$$ asked 2021-05-19
Consider the function $$f(x)=2x^{3}-6x^{2}-18x+9$$ on the interval [-2,4].
What is the absolute minimum of f(x) on [-2,4]?
What is the absolute maximum of f(x) on [-2,4]? asked 2021-05-09
Find the absolute maximum and minimum values of f on the given interval.
$$f(x)=4x^{3}-6x^{2}-24x+9. [-2,3]$$ asked 2021-04-06
$$\displaystyle{Q}={\int_{{4}}^{{9}}}{\frac{{{3}{x}+{12}}}{{{x}^{{2}}+{6}{x}+{9}}}}{\left.{d}{x}\right.}$$
Determine the numerical values of the coefficients, A and B, where $$\displaystyle{A}\leq{B}$$.
$$\displaystyle{\frac{{{A}}}{{{d}{e}{n}{o}{m}{i}{a}{n}{a}\to{r}}}}+{\frac{{{B}}}{{{d}{e}{n}{o}{m}{i}{a}{n}\to{r}}}}$$
Need to find A and B. asked 2021-06-05
Find the absolute maximum value and the absolute minimum value, if any, of the function.
$$g(x)=-x^{2}+2x+6$$ asked 2021-04-13
A slab of insulating material of uniform thickness d, lying between $$\displaystyle{\frac{{-{d}}}{{{2}}}}$$ to $$\displaystyle{\frac{{{d}}}{{{2}}}}$$ along the x axis, extends infinitely in the y and z directions, as shown in the figure. The slab has a uniform charge density $$\displaystyle\rho$$. The electric field is zero in the middle of the slab, at x=0. Which of the following statements is true of the electric field $$\displaystyle{E}_{{{\vec}}}$$ at the surface of one side of the slab? asked 2021-06-04
Solve the absolute value and find intervals.
$$|\frac{2}{x}-4|<3$$ asked 2021-05-09
Find the absolute maximum and absolute minimum values of f on the given interval.
$$f(x)=x+\frac{4}{x},[0.2,8]$$ asked 2021-05-21
Find the absolute maximum and absolute minimum values of f over the interval. $$f(x)=(\frac{4}{x})+\ln(x^{2}), 1\leq x\leq 4$$
...