Solve the following indefinite integrals. \int (\cos \frac{x}{2}-\sin \frac{x}{2})^{2}dx

Ava-May Nelson 2021-09-21 Answered
Solve the following indefinite integrals.
\(\displaystyle\int{\left({\cos{{\frac{{{x}}}{{{2}}}}}}-{\sin{{\frac{{{x}}}{{{2}}}}}}\right)}^{{{2}}}{\left.{d}{x}\right.}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

likvau
Answered 2021-09-22 Author has 4590 answers
To find:
The indefinite integral of \(\displaystyle\int{\left({\cos{{\left({\frac{{{x}}}{{{2}}}}\right)}}}-{\sin{{\left({\frac{{{x}}}{{{2}}}}\right)}}}\right)}^{{{2}}}{\left.{d}{x}\right.}\).
Calculation:
The indefinite integral of \(\displaystyle\int{\left({\cos{{\left({\frac{{{x}}}{{{2}}}}\right)}}}-{\sin{{\left({\frac{{{x}}}{{{2}}}}\right)}}}\right)}^{{{2}}}{\left.{d}{x}\right.}\) can be obtained as,
\(\displaystyle\int{\left({\cos{{\left({\frac{{{x}}}{{{2}}}}\right)}}}-{\sin{{\left({\frac{{{x}}}{{{2}}}}\right)}}}\right)}^{{{2}}}{\left.{d}{x}\right.}=\int{{\sin}^{{{2}}}{\left({\frac{{{x}}}{{{2}}}}\right)}}+{{\cos}^{{{2}}}{\left({\frac{{{x}}}{{{2}}}}\right)}}-{2}{\sin{{\left({\frac{{{x}}}{{{2}}}}\right)}}}{\cos{{\left({\frac{{{x}}}{{{2}}}}\right)}}}{\left.{d}{x}\right.}\)
\(\displaystyle=\int{1}-{\sin{{x}}}{\left.{d}{x}\right.}\)
\(\displaystyle={x}+{\cos{{x}}}+{C}\)
Thus, the integral of \(\displaystyle\int{\left({\cos{{\left({\frac{{{x}}}{{{2}}}}\right)}}}-{\sin{{\left({\frac{{{x}}}{{{2}}}}\right)}}}\right)}^{{{2}}}{\left.{d}{x}\right.}\ {i}{s}\ {x}+{\cos{{x}}}+{C}\).
Have a similar question?
Ask An Expert
6
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...