Question

Please solve the 2nd order differential equation by (PLEASE FOLLOW GIVEN METHOD) LAPLACE TRANSFORMATION ALSO, USE PARTIAL FRACTION WHEN YOU ARRIVE L(y

Laplace transform
ANSWERED
asked 2021-01-27

Please solve the 2nd order differential equation by (PLEASE FOLLOW GIVEN METHOD) LAPLACE TRANSFORMATION
ALSO, USE PARTIAL FRACTION WHEN YOU ARRIVE
\(L(y) = \left[\frac{w}{(s^2 + a^2)(s^2+w^2)}\right] \cdot b\)
Problem 2 Solve the differential equation
\(\frac{d^2y}{dt^2}+a^2y=b \sin(\omega t)\) where \(y(0)=0\)
and \(y'(0)=0\)

Answers (1)

2021-01-28
Step 1
Given a differential equation, \(y"+a^2y=b\sin(\omega t)\), where \(y(0)=0, y'(0)=0\)
Taking the Laplace transform of both sides of the given differential equation,
\(L(y")+a^2L(y)=bL(\sin(\omega t))\)
\(s^2L(y)−sy(0)−y'(0)+a^2L(y)=\frac{b\omega}{s^2+\omega^2}\)
\((s^2+a^2)L(y)=\frac{b\omega}{s^2+\omega^2}\)
\(\therefore, L(y)=\frac{b\omega}{(s^2+\omega^2)}(s^2+\omega^2)\)
Step 2
Applying partial fraction,
\(\frac{b\omega}{(s^2+\omega^2)(s^2+a^2)}=\frac{A}{s^2+\omega^2}+\frac{B}{s^2+\omega^2}\dots (1)\)
\(A(s^2+a^2)+B(s^2+\omega^2)=b\omega\)
\(As^2+Aa^2+Bs^2+B\omega^2=b\omega\)
\((A+B)s^2+Aa^2+B\omega^2=b\omega\)
Comparing coefficients,
\(A+B=0 \Rightarrow A=-B\)
\(Aa^2+B\omega^2=b\omega\)
\(\text{Substitute A in the above equation, }\)
\(-Ba^2+B\omega^2=b\omega\)
\(B=\frac{b\omega}{\omega^2-a^2}\)
Therefore, \(A=(\frac{b\omega}{a})^2-\omega^2\)
Step 3
Substitute A and B in equation (1),
\(\frac{b\omega}{(s^2+\omega^2)(s^2+a^2)}=\frac{b\omega}{(a^2-\omega^2)(s^2+\omega^2)}-\frac{b\omega}{(a^2-w^2)(s^2+a^2)}\)
\(=\frac{b\omega}{(a^2-w^2)\frac{1}{s^2+\omega^2}}-\frac{1}{(s^2+a^2)}\)
Substitute in L(y),
\(L(y)=\frac{b\omega}{a^2-\omega^2} \left(\frac{1}{s^2+\omega^2}-\frac{1}{s^2+a^2}\right)\)
\(\text{Taking inverse Laplace transform, }\)
\(y(t)=\frac{b\omega}{a^2-\omega^2}L^{-1}\left(\frac{1}{s^2+\omega^2}-\frac{1}{s^2+a^2}\right)\)
\(y(t)=\frac{b\omega}{a^2-\omega^2}\left[L^{-1}\left(\frac{1}{s^2+\omega^2}\right)-L^{-1}\left(\frac{1}{s^2+a^2}\right)\right]\)
\(=\frac{b\omega}{a^2-\omega^2}\left[\frac{1}{\omega} \sin(\omega t)-\frac{1}{a} \sin(at)\right]\)
Therefore, the required solution is,
\(y(t)=\frac{b\omega}{a^2-\omega^2}\left[\frac{1}{\omega} \sin(\omega t)-\frac{1}{a} \sin(at)\right]\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2020-11-08

How to solve this equation \(y'''-4y''+2y'-16y=4x+1\) using Method of Undetermined Coefficient, Variation of Parameters and Laplace Transformation

asked 2021-02-12

Use the definition of Laplace Transforms to show that:
\(\displaystyle{L}{\left\lbrace{t}^{n}\right\rbrace}=\frac{{{n}!}}{{{s}^{{{n}+{1}}}}},{n}={1},{2},{3},\ldots\)

asked 2021-02-19

Use Laplace transform to solve the following initial-value problem
\(y"+2y'+y=0\)
\(y(0)=1, y'(0)=1\)
a) \(\displaystyle{e}^{{-{t}}}+{t}{e}^{{-{t}}}\)
b) \(\displaystyle{e}^{t}+{2}{t}{e}^{t}\)
c) \(\displaystyle{e}^{{-{t}}}+{2}{t}{e}^{t}\)
d) \(\displaystyle{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
e) \(\displaystyle{2}{e}^{{-{t}}}+{2}{t}{e}^{{-{t}}}\)
f) Non of the above

asked 2021-03-07

use the Laplace transform to solve the initial value problem.
\(y"-3y'+2y=\begin{cases}0&0\leq t<1\\1&1\leq t<2\\ -1&t\geq2\end{cases}\)
\(y(0)=-3\)
\(y'(0)=1\)

asked 2020-11-08

Find the solution of the Differentional equation by using Laplace Transformation
\(2y'-3y=e^{2t}, y(0)=1\)
\(y"+y=t, y(0)=0 \ and \ y'(0)=2\)

asked 2021-02-16

Solution of I.V.P for harmonic oscillator with driving force is given by Inverse Laplace transform
\(y"+\omega^{2}y=\sin \gamma t , y(0)=0,y'(0)=0\)
1) \(y(t)=L^{-1}\bigg(\frac{\gamma}{(s^{2}+\omega^{2})^{2}}\bigg)\)
2) \(y(t)=L^{-1}\bigg(\frac{\gamma}{s^{2}+\omega^{2}}\bigg)\)
3) \(y(t)=L^{-1}\bigg(\frac{\gamma}{(s^{2}+\gamma^{2})^{2}}\bigg)\)
4) \( y(t)=L^{-1}\bigg(\frac{\gamma}{(s^{2}+\gamma^{2})(s^{2}+\omega^{2})}\bigg)\)

asked 2021-02-21

Use the Laplace transform to solve the heat equation
\(u_t=u_{xx} 0<x<1 \text{ and } t>0\)
\({u}{\left({x},{0}\right)}= \sin{{\left(\pi{x}\right)}}\)
\({u}{\left({0},{t}\right)}={u}{\left({1},{t}\right)}={0}\)

asked 2020-12-27

Let f(t) be a function on \(\displaystyle{\left[{0},\infty\right)}\). The Laplace transform of fis the function F defined by the integral \(\displaystyle{F}{\left({s}\right)}={\int_{{0}}^{\infty}}{e}^{{-{s}{t}}} f{{\left({t}\right)}}{\left.{d}{t}\right.}\) . Use this definition to determine the Laplace transform of the following function.
\(\displaystyle f{{\left({t}\right)}}={\left\lbrace\begin{matrix}{1}-{t}&{0}<{t}<{1}\\{0}&{1}<{t}\end{matrix}\right.}\)

asked 2021-01-13

The function
\(\begin{cases}t & 0\leq t<1\\ e^t & t\geq1 \end{cases}\)
has the following Laplace transform,
\(L(f(t))=\int_0^1te^{-st}dt+\int_1^\infty e^{-(s+1)t}dt\)
True or False

asked 2021-03-09

Solve the following IVP using Laplace Transform
\(y′′+3y′+2y=e^{-t}, y(0)=0 y′(0)=0\)

...