Expand the expression and write your answer without the exponents. \log_4

emancipezN 2021-09-30 Answered
Expand the expression and write your answer without the exponents.
\(\displaystyle{{\log}_{{4}}{\frac{{{x}^{{2}}{y}^{{4}}}}{{{8}}}}}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

wornoutwomanC
Answered 2021-10-01 Author has 8427 answers
Given:
\(\displaystyle{{\log}_{{4}}{\left({\frac{{{x}^{{2}}{y}^{{4}}}}{{{8}}}}\right)}}\)
To find the expression of \(\displaystyle{{\log}_{{4}}{\left({\frac{{{x}^{{2}}{y}^{{4}}}}{{{8}}}}\right)}}\)
Now applying the rule:
\(\displaystyle{{\log}_{{c}}{\left({\frac{{{a}}}{{{b}}}}\right)}}={{\log}_{{c}}{\left({a}\right)}}-{{\log}_{{c}}{\left({b}\right)}}\)
\(\displaystyle{{\log}_{{4}}{\left({\frac{{{x}^{{2}}{y}^{{4}}}}{{{8}}}}\right)}}={{\log}_{{4}}{\left({x}^{{2}}{y}^{{4}}\right)}}-{{\log}_{{4}}{\left({8}\right)}}\)
Now applying the rule in \(\displaystyle{{\log}_{{4}}{\left({x}^{{2}}{y}^{{4}}\right)}}\)
\(\displaystyle{{\log}_{{c}}{\left({a}{b}\right)}}={{\log}_{{c}}{\left({a}\right)}}+{{\log}_{{c}}{\left({b}\right)}}\)
\(\displaystyle={{\log}_{{4}}{\left({x}^{{2}}\right)}}+{{\log}_{{4}}{\left({y}^{{4}}\right)}}-{{\log}_{{4}}{\left({8}\right)}}\)
Now Applying the rule (3) in \(\displaystyle{{\log}_{{4}}{\left({x}^{{2}}\right)}}+{{\log}_{{4}}{\left({y}^{{4}}\right)}}\)
\(\displaystyle={2}{{\log}_{{4}}{\left({x}\right)}}+{4}{{\log}_{{4}}{\left({y}\right)}}-{{\log}_{{4}}{\left({8}\right)}}\)
\(\displaystyle={2}{{\log}_{{4}}{\left({x}\right)}}+{4}{{\log}_{{4}}{\left({y}\right)}}-{{\log}_{{{2}^{{2}}}}{\left({8}\right)}}\)
Now Applying the rule (3) in \(\displaystyle{{\log}_{{2}}{\left({8}\right)}}\)
\(\displaystyle{{\log}_{{a}}{\left({x}^{{b}}\right)}}={b}{{\log}_{{a}}{\left({x}\right)}}\)
\(\displaystyle={2}{{\log}_{{4}}{\left({x}\right)}}+{4}{{\log}_{{4}}{\left({y}\right)}}-{\frac{{{1}}}{{{2}}}}{3}{{\log}_{{2}}{\left({2}\right)}}\)
Now Applying the rule (5) in \(\displaystyle{{\log}_{{2}}{\left({2}\right)}}\)
\(\displaystyle{{\log}_{{a}}{\left({a}\right)}}={1}\)
\(\displaystyle={2}{{\log}_{{4}}{\left({x}\right)}}+{41}{{\log}_{{4}}{\left({y}\right)}}-{\frac{{{3}}}{{{2}}}}\)
Answer: \(\displaystyle{{\log}_{{4}}{\left({\frac{{{x}^{{2}}{y}^{{4}}}}{{{8}}}}\right)}}={2}{{\log}_{{4}}{\left({x}\right)}}+{4}{{\log}_{{4}}{\left({y}\right)}}={\frac{{{3}}}{{{2}}}}\)
Have a similar question?
Ask An Expert
21
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more
...