# Model the following data using an exponential function of the form f(x)=Ab^xZ

Model the following data using an exponential function of the form $$\displaystyle{f{{\left({x}\right)}}}={A}{b}^{{x}}$$ . Set up a system of equations, and solve it to get A and b.
f(x) is exponential and goes through the points (1, 2) and (4, 6).

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

toroztatG
Given information:
The required model for the given data is exponential function of the form $$\displaystyle{f{{\left({x}\right)}}}={A}{b}^{{x}}$$.
Find the function f(x) if it goes through (1,2) and (4,6):
The data points are (1,2) and (4,6).
The function f(x) is obtained as given below:
$$\displaystyle{f{{\left({x}\right)}}}={A}{b}^{{x}}$$
$$\displaystyle{2}={A}{b}^{{1}}\to\ {\left({1}\right)}$$
$$\displaystyle{A}{b}={2}$$
$$\displaystyle{6}={A}{b}^{{4}}$$
$$\displaystyle{A}{b}^{{4}}={6}\to\ {\left({2}\right)}$$
$$\displaystyle{\frac{{{\left({2}\right)}}}{{{\left({1}\right)}}}}\to{\frac{{{A}{b}^{{4}}}}{{{A}{b}}}}={\frac{{{6}}}{{{2}}}}={3}$$
$$\displaystyle{b}^{{3}}={3}$$
$$\displaystyle{b}={3}^{{{\frac{{{1}}}{{{3}}}}}}$$
$$\displaystyle{A}={\frac{{{2}}}{{{b}}}}={\frac{{{2}}}{{{3}^{{{\frac{{{1}}}{{{3}}}}}}}}}$$
$$\displaystyle{f{{\left({x}\right)}}}={\frac{{{2}}}{{{3}^{{{\frac{{{1}}}{{{3}}}}}}}}}{\left({3}^{{{\frac{{{1}}}{{{3}}}}}}\right)}^{{x}}$$